Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Heilbronn triangle problem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==References== {{reflist|refs= <ref name=barnao>{{citation | last1 = Barequet | first1 = Gill | last2 = Naor | first2 = Jonathan | issue = 3 | journal = Far East Journal of Applied Mathematics | mr = 2283483 | pages = 343–354 | title = Large <math>k</math>-D simplices in the <math>d</math>-dimensional unit cube | volume = 24 | year = 2006}}</ref> <ref name=bkhl>{{citation | last1 = Bertram-Kretzberg | first1 = Claudia | last2 = Hofmeister | first2 = Thomas | last3 = Lefmann | first3 = Hanno | doi = 10.1137/S0097539798348870 | issue = 2 | journal = [[SIAM Journal on Computing]] | mr = 1769363 | pages = 383–390 | title = An algorithm for Heilbronn's problem | volume = 30 | year = 2000| hdl = 2003/5313 | hdl-access = free }}</ref> <ref name=brass>{{citation | last = Brass | first = Peter | doi = 10.1137/S0895480103435810 | issue = 1 | journal = [[SIAM Journal on Discrete Mathematics]] | mr = 2178353 | pages = 192–195 | title = An upper bound for the <math>d</math>-dimensional analogue of Heilbronn's triangle problem | volume = 19 | year = 2005}}</ref> <ref name=chazelle>{{citation | last = Chazelle | first = Bernard | author-link = Bernard Chazelle | isbn = 978-0-521-00357-5 | page = 266 | publisher = Cambridge University Press | title = The Discrepancy Method: Randomness and Complexity | url = https://books.google.com/books?id=dmOPmEh6LdYC&pg=PA266 | year = 2001}}</ref> <ref name=comyeb>{{citation | last1 = Comellas | first1 = Francesc | last2 = Yebra | first2 = J. Luis A. | doi = 10.37236/1623 | doi-access = free | issue = 1 | journal = [[Electronic Journal of Combinatorics]] | mr = 1887087 | page = R6 | title = New lower bounds for Heilbronn numbers | volume = 9 | year = 2002}}</ref> <ref name=dyz>{{citation | last1 = Dress | first1 = Andreas W. M. | author1-link = Andreas Dress | last2 = Yang | first2 = Lu | last3 = Zeng | first3 = Zhenbing | editor1-last = Du | editor1-first = Ding-Zhu | editor2-last = Pardalos | editor2-first = Panos M. | contribution = Heilbronn problem for six points in a planar convex body | doi = 10.1007/978-1-4613-3557-3_13 | mr = 1376828 | pages = 173–190 | publisher = Kluwer Acad. Publ., Dordrecht | series = Nonconvex Optim. Appl. | title = Minimax and Applications | volume = 4 | year = 1995| isbn = 978-1-4613-3559-7 }}</ref> <ref name=goldberg>{{citation | last = Goldberg | first = Michael | journal = [[Mathematics Magazine]] | doi = 10.2307/2687869 | issue = 3 | jstor = 2687869 | mr = 0296816 | pages = 135–144 | title = Maximizing the smallest triangle made by <math>n</math> points in a square | volume = 45 | year = 1972}}</ref> <ref name=grimmett>{{citation | last1 = Grimmett | first1 = G. | author1-link = Geoffrey Grimmett | last2 = Janson | first2 = S. | author2-link = Svante Janson | doi = 10.1002/rsa.10092 | issue = 2 | journal = Random Structures & Algorithms | pages = 206–223 | s2cid = 12272636 | title = On smallest triangles | volume = 23 | year = 2003}}</ref> <ref name=jlv>{{citation | last1 = Jiang | first1 = Tao | last2 = Li | first2 = Ming | author2-link = Ming Li | last3 = Vitányi | first3 = Paul | author3-link = Paul Vitányi | arxiv = math/9902043 | doi = 10.1002/rsa.10024 | issue = 2 | journal = Random Structures & Algorithms | mr = 1884433 | pages = 206–219 | s2cid = 2079746 | title = The average-case area of Heilbronn-type triangles | volume = 20 | year = 2002}}</ref> <ref name=kps81>{{citation | last1 = Komlós | first1 = J. | author1-link = János Komlós (mathematician) | last2 = Pintz | first2 = J. | author2-link = János Pintz | last3 = Szemerédi | first3 = E. | author3-link = Endre Szemerédi | doi = 10.1112/jlms/s2-24.3.385 | issue = 3 | journal = [[Journal of the London Mathematical Society]] | mr = 0635870 | pages = 385–396 | title = On Heilbronn's triangle problem | volume = 24 | year = 1981}}</ref> <ref name=kps82>{{citation | last1 = Komlós | first1 = J. | author1-link = János Komlós (mathematician) | last2 = Pintz | first2 = J. | author2-link = János Pintz | last3 = Szemerédi | first3 = E. | author3-link = Endre Szemerédi | doi = 10.1112/jlms/s2-25.1.13 | issue = 1 | journal = [[Journal of the London Mathematical Society]] | mr = 0645860 | pages = 13–24 | title = A lower bound for Heilbronn's problem | volume = 25 | year = 1982}}</ref> <ref name=lefmann>{{citation | last = Lefmann | first = Hanno | doi = 10.1007/s00454-007-9041-y | doi-access = free | issue = 3 | journal = [[Discrete & Computational Geometry]] | mr = 2443292 | pages = 401–413 | title = Distributions of points in <math>d</math> dimensions and large <math>k</math>-point simplices | volume = 40 | year = 2008}}</ref> <ref name=roth>{{citation | last = Roth | first = K. F. | author-link = Klaus Roth | doi = 10.1112/jlms/s1-26.3.198 | issue = 3 | journal = [[Journal of the London Mathematical Society]] | pages = 198–204 | title = On a problem of Heilbronn | volume = 26 | year = 1951}}</ref> <ref name=yanzen>{{citation | last1 = Yang | first1 = Lu | last2 = Zeng | first2 = Zhenbing | editor1-last = Du | editor1-first = Ding-Zhu | editor2-last = Pardalos | editor2-first = Panos M. | contribution = Heilbronn problem for seven points in a planar convex body | doi = 10.1007/978-1-4613-3557-3_14 | mr = 1376829 | pages = 191–218 | publisher = Kluwer Acad. Publ., Dordrecht | series = Nonconvex Optim. Appl. | title = Minimax and Applications | volume = 4 | year = 1995| isbn = 978-1-4613-3559-7 }}</ref> <ref name=zenche>{{citation | last1 = Zeng | first1 = Zhenbing | last2 = Chen | first2 = Liangyu | editor1-last = Sturm | editor1-first = Thomas | editor2-last = Zengler | editor2-first = Christoph | contribution = On the Heilbronn optimal configuration of seven points in the square | doi = 10.1007/978-3-642-21046-4_11 | location = Heidelberg | mr = 2805061 | pages = 196–224 | publisher = Springer | series = Lecture Notes in Computer Science | title = Automated Deduction in Geometry: 7th International Workshop, ADG 2008, Shanghai, China, September 22-24, 2008, Revised Papers | volume = 6301 | year = 2011| isbn = 978-3-642-21045-7 }}</ref> <ref name=cpz23>{{cite arXiv |mode=cs2 | last1 = Cohen | first1 = Alex | last2 = Pohoata | first2 = Cosmin | last3 = Zakharov | first3 = Dmitrii | eprint = 2305.18253 | title = A new upper bound for the Heilbronn triangle problem | year = 2023| class = math.CO }}</ref> <ref name=sloman>{{citation | first = Leila | last = Sloman | date = September 8, 2023 | title = The Biggest Smallest Triangle Just Got Smaller | url = https://www.quantamagazine.org/the-biggest-smallest-triangle-just-got-smaller-20230908 | access-date = September 9, 2023 | magazine = Quanta }}</ref> }}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)