Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Helmholtz decomposition
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Derivation from the Fourier transform === Note that in the theorem stated here, we have imposed the condition that if <math>\mathbf{F}</math> is not defined on a bounded domain, then <math>\mathbf{F}</math> shall decay faster than <math>1/r</math>. Thus, the [[Fourier transform]] of <math>\mathbf{F}</math>, denoted as <math>\mathbf{G}</math>, is guaranteed to exist. We apply the convention <math display="block">\mathbf{F}(\mathbf{r}) = \iiint \mathbf{G}(\mathbf{k}) e^{i\mathbf{k} \cdot \mathbf{r}} dV_k </math> The Fourier transform of a scalar field is a scalar field, and the Fourier transform of a vector field is a vector field of same dimension. Now consider the following scalar and vector fields: <math display="block">\begin{align} G_\Phi(\mathbf{k}) &= i \frac{\mathbf{k} \cdot \mathbf{G}(\mathbf{k})}{\|\mathbf{k}\|^2} \\ \mathbf{G}_\mathbf{A}(\mathbf{k}) &= i \frac{\mathbf{k} \times \mathbf{G}(\mathbf{k})}{\|\mathbf{k}\|^2} \\ [8pt] \Phi(\mathbf{r}) &= \iiint G_\Phi(\mathbf{k}) e^{i \mathbf{k} \cdot \mathbf{r}} dV_k \\ \mathbf{A}(\mathbf{r}) &= \iiint \mathbf{G}_\mathbf{A}(\mathbf{k}) e^{i \mathbf{k} \cdot \mathbf{r}} dV_k \end{align} </math> Hence <math display="block">\begin{align} \mathbf{G}(\mathbf{k}) &= - i \mathbf{k} G_\Phi(\mathbf{k}) + i \mathbf{k} \times \mathbf{G}_\mathbf{A}(\mathbf{k}) \\ [6pt] \mathbf{F}(\mathbf{r}) &= -\iiint i \mathbf{k} G_\Phi(\mathbf{k}) e^{i \mathbf{k} \cdot \mathbf{r}} dV_k + \iiint i \mathbf{k} \times \mathbf{G}_\mathbf{A}(\mathbf{k}) e^{i \mathbf{k} \cdot \mathbf{r}} dV_k \\ &= - \nabla \Phi(\mathbf{r}) + \nabla \times \mathbf{A}(\mathbf{r}) \end{align}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)