Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hessenberg matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Jacobi (Givens) rotations=== A [[Jacobi rotation]] (also called Givens rotation) is an orthogonal matrix transformation in the form :<math> A\to A'=J(p,q,\theta)^TAJ(p,q,\theta) \;, </math> where <math>J(p,q,\theta)</math>, <math>p< q</math>, is the Jacobi rotation matrix with all matrix elements equal zero except for ::<math>\left\{\begin{align} J(p,q,\theta)_{ii} &{}= 1 \; \forall i \ne p,q\\ J(p,q,\theta)_{pp} &{}= \cos(\theta) \\ J(p,q,\theta)_{qq} &{}= \cos(\theta) \\ J(p,q,\theta)_{pq} &{}= \sin(\theta) \\ J(p,q,\theta)_{qp} &{}= -\sin(\theta) \;. \end{align}\right.</math> One can zero the matrix element <math>A'_{p-1,q}</math> by choosing the rotation angle <math>\theta</math> to satisfy the equation :<math> A_{p-1,p}\sin\theta+A_{p-1,q}\cos\theta=0 \;, </math> Now, the sequence of such Jacobi rotations with the following <math>(p,q)</math> :<math> (p,q)=(2,3),(2,4),\dots,(2,n),(3,4),\dots,(3,n),\dots,(n-1,n) </math> reduces the matrix <math>A</math> to the lower Hessenberg form.<ref>{{cite journal | arxiv=1501.07812 | doi=10.1016/j.laa.2015.08.026 | title=Quasiseparable Hessenberg reduction of real diagonal plus low rank matrices and applications | date=2016 | last1=Bini | first1=Dario A. | last2=Robol | first2=Leonardo | journal=Linear Algebra and Its Applications | volume=502 | pages=186β213 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)