Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hilbert transform
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Boundedness=== If {{math|1 < ''p'' < β}}, then the Hilbert transform on <math>L^p(\mathbb{R})</math> is a [[bounded linear operator]], meaning that there exists a constant {{mvar|C<sub>p</sub>}} such that <math display="block">\left\|\operatorname{H}u\right\|_p \le C_p \left\|u\right\|_p </math> for all {{nowrap|<math>u \isin L^p(\mathbb{R})</math>.}}<ref>This theorem is due to {{harvnb|Riesz|1928|loc=VII}}; see also {{harvnb|Titchmarsh|1948|loc=Theorem 101}}.</ref> The best constant <math>C_p</math> is given by<ref>This result is due to {{harvnb|Pichorides|1972}}; see also {{harvnb|Grafakos|2004|loc=Remark 4.1.8}}.</ref> <math display="block">C_p = \begin{cases} \tan \frac{\pi}{2p} & \text{if} ~ 1 < p \leq 2 \\[4pt] \cot \frac{\pi}{2p} & \text{if} ~ 2 < p < \infty \end{cases}</math> An easy way to find the best <math>C_p</math> for <math>p</math> being a power of 2 is through the so-called Cotlar's identity that <math> (\operatorname{H}f)^2 =f^2 +2\operatorname{H}(f\operatorname{H}f)</math> for all real valued {{mvar|f}}. The same best constants hold for the periodic Hilbert transform. The boundedness of the Hilbert transform implies the <math>L^p(\mathbb{R})</math> convergence of the symmetric partial sum operator <math display="block">S_R f = \int_{-R}^R \hat{f}(\xi) e^{2\pi i x\xi} \, \mathrm{d}\xi </math> to {{mvar|f}} in {{nowrap|<math>L^p(\mathbb{R})</math>.}}<ref>See for example {{harvnb|Duoandikoetxea|2000|p=59}}.</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)