Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hypercomputation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Analysis of capabilities== Many hypercomputation proposals amount to alternative ways to read an [[oracle machine|oracle]] or [[advice (complexity)|advice function]] embedded into an otherwise classical machine. Others allow access to some higher level of the [[arithmetic hierarchy]]. For example, supertasking Turing machines, under the usual assumptions, would be able to compute any predicate in the [[truth-table reduction|truth-table degree]] containing <math>\Sigma^0_1</math> or <math>\Pi^0_1</math>. Limiting-recursion, by contrast, can compute any predicate or function in the corresponding [[Turing degree]], which is known to be <math>\Delta^0_2</math>. Gold further showed that limiting partial recursion would allow the computation of precisely the <math>\Sigma^0_2</math> predicates. {| class="wikitable sortable" |- ! Model ! Computable predicates ! Notes ! {{Refh}} |- | supertasking | <math>\operatorname{tt}\left(\Sigma^0_1, \Pi^0_1\right)</math> | dependent on outside observer | <ref>{{cite journal| author=Petrus H. Potgieter| title=Zeno machines and hypercomputation| journal=Theoretical Computer Science| volume=358 | issue=1 |date=July 2006 | pages=23–33| doi=10.1016/j.tcs.2005.11.040| arxiv=cs/0412022| s2cid=6749770}}</ref> |- | limiting/trial-and-error | <math> \Delta^0_2 </math> | | <ref name=LimRecurs/> |- | iterated limiting (''k'' times) | <math> \Delta^0_{k+1} </math> | | <ref name=IterLimRec/> |- | [[Blum–Shub–Smale machine]] | | incomparable with traditional [[computable real]] functions | <ref>{{cite book|author=[[Lenore Blum]], Felipe Cucker, Michael Shub, and [[Stephen Smale]]|title=Complexity and Real Computation|title-link= Complexity and Real Computation |isbn=978-0-387-98281-6|year=1998|publisher=Springer }}</ref> |- | [[Malament–Hogarth spacetime]] | '''[[Hyperarithmetic hierarchy|HYP]]''' | dependent on spacetime structure | <ref>{{cite journal | author=P.D. Welch | title = The extent of computation in Malament-Hogarth spacetimes | arxiv=gr-qc/0609035 | journal=British Journal for the Philosophy of Science |volume=59 | issue = 4 |year= 2008 | pages=659–674 | doi=10.1093/bjps/axn031| author-link = P.D. Welch }}</ref> |- |- | analog recurrent neural network | <math> \Delta^0_1[f] </math> | ''f'' is an advice function giving connection weights; size is bounded by runtime | <ref name="Siegelmann.1995">{{cite journal | doi=10.1126/science.268.5210.545 | pmid=17756722 | url=http://binds.cs.umass.edu/papers/1995_Siegelmann_Science.pdf | author=H.T. Siegelmann | title=Computation Beyond the Turing Limit | journal=Science | volume=268 | number=5210 | pages=545–548 | date=Apr 1995 | bibcode=1995Sci...268..545S | s2cid=17495161 }}</ref><ref>{{cite journal | author=Hava Siegelmann | author2=Eduardo Sontag | title=Analog Computation via Neural Networks | journal=Theoretical Computer Science | volume=131 | year=1994 | pages=331–360 | doi=10.1016/0304-3975(94)90178-3 | issue=2 | author-link2=Eduardo Sontag| author-link=Hava Siegelmann | doi-access=free }}</ref> |- | infinite time Turing machine | <math> AQI</math> | Arithmetical Quasi-Inductive sets | <ref>{{cite journal|author=P.D. Welch |title=Characteristics of discrete transfinite time Turing machine models: Halting times, stabilization times, and Normal Form theorems |journal=Theoretical Computer Science |year=2009 |volume=410 |issue=4–5 |pages=426–442 |doi=10.1016/j.tcs.2008.09.050 |author-link=P.D. Welch |doi-access=free }}</ref> |- | classical fuzzy Turing machine | <math> \Sigma^0_1 \cup \Pi^0_1 </math> | for any computable [[T-norm fuzzy logics|t-norm]] | <ref name=ClassicalFuzzy /> |- | increasing function oracle | <math> \Delta^1_1 </math> | for the one-sequence model; <math> \Pi^1_1 </math> are r.e. | <ref name=Taranovsky/> |- | ordinal turing machine | <math> \Delta^1_2 </math> | for the parameter-free model | <ref>{{cite journal |doi=10.3233/COM-2012-002 |title=Tree Representations via Ordinal Machines |date=2012 |last1=Schlicht |first1=Philipp |last2=Seyfferth |first2=Benjamin |journal=Computability |volume=1 |pages=45–57 }}</ref> |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)