Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hypercube
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Generalized hypercubes == Regular [[Complex polytope#Regular complex polytopes|complex polytopes]] can be defined in [[Complex number|complex]] [[Hilbert space]] called ''generalized hypercubes'', γ{{supsub|''p''|''n''}} = <sub>''p''</sub>{4}<sub>2</sub>{3}...<sub>2</sub>{3}<sub>2</sub>, or {{CDD|pnode_1|4|node|3}}..{{CDD|3|node|3|node}}. Real solutions exist with ''p'' = 2, i.e. γ{{supsub|2|''n''}} = γ<sub>''n''</sub> = <sub>2</sub>{4}<sub>2</sub>{3}...<sub>2</sub>{3}<sub>2</sub> = {4,3,..,3}. For ''p'' > 2, they exist in <math>\mathbb{C}^n</math>. The facets are generalized (''n''β1)-cube and the [[vertex figure]] are regular [[simplex]]es. The [[regular polygon]] perimeter seen in these orthogonal projections is called a [[Petrie polygon]]. The generalized squares (''n'' = 2) are shown with edges outlined as red and blue alternating color ''p''-edges, while the higher ''n''-cubes are drawn with black outlined ''p''-edges. The number of ''m''-face elements in a ''p''-generalized ''n''-cube are: <math>p^{n-m}{n \choose m}</math>. This is ''p''<sup>''n''</sup> vertices and ''pn'' facets.<ref>{{citation | last = Coxeter | first = H. S. M. | mr = 0370328 | page = 180 | publisher = [[Cambridge University Press]] | location = London & New York | title = Regular complex polytopes | year = 1974}}.</ref> {| class=wikitable |+ Generalized hypercubes ! || ''p''=2 || ||''p''=3 ||''p''=4||''p''=5||''p''=6||''p''=7||''p''=8 |- align=center valign=bottom !valign=middle|<math>\mathbb{R}^2</math> |[[File:2-generalized-2-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|2|2}} = [[square|{4}]] = {{CDD|node_1|4|node}}<BR>4 vertices !valign=middle|<math>\mathbb{C}^2</math> |[[File:3-generalized-2-cube skew.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|3|2}} = {{CDD|3node_1|4|node}}<BR>9 vertices |[[File:4-generalized-2-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|4|2}} = {{CDD|4node_1|4|node}}<BR>16 vertices |[[File:5-generalized-2-cube skew.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|5|2}} = {{CDD|5node_1|4|node}}<BR>25 vertices |[[File:6-generalized-2-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|6|2}} = {{CDD|6node_1|4|node}}<BR>36 vertices |[[File:7-generalized-2-cube skew.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|7|2}} = {{CDD|7node_1|4|node}}<BR>49 vertices |[[File:8-generalized-2-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|8|2}} = {{CDD|8node_1|4|node}}<BR>64 vertices |- align=center valign=bottom !valign=middle|<math>\mathbb{R}^3</math> |[[File:2-generalized-3-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|2|3}} = [[cube|{4,3}]] = {{CDD|node_1|4|node|3|node}}<BR>8 vertices !valign=middle|<math>\mathbb{C}^3</math> |[[File:3-generalized-3-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|3|3}} = {{CDD|3node_1|4|node|3|node}}<BR>27 vertices |[[File:4-generalized-3-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|4|3}} = {{CDD|4node_1|4|node|3|node}}<BR>64 vertices |[[File:5-generalized-3-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|5|3}} = {{CDD|5node_1|4|node|3|node}}<BR>125 vertices |[[File:6-generalized-3-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|6|3}} = {{CDD|6node_1|4|node|3|node}}<BR>216 vertices |[[File:7-generalized-3-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|7|3}} = {{CDD|7node_1|4|node|3|node}}<BR>343 vertices |[[File:8-generalized-3-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|8|3}} = {{CDD|8node_1|4|node|3|node}}<BR>512 vertices |- align=center valign=bottom !valign=middle|<math>\mathbb{R}^4</math> |[[File:2-generalized-4-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|2|4}} = [[tesseract|{4,3,3}]]<BR>= {{CDD|node_1|4|node|3|node|3|node}}<BR>16 vertices !valign=middle|<math>\mathbb{C}^4</math> |[[File:3-generalized-4-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|3|4}} = {{CDD|3node_1|4|node|3|node|3|node}}<BR>81 vertices |[[File:4-generalized-4-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|4|4}} = {{CDD|4node_1|4|node|3|node|3|node}}<BR>256 vertices |[[File:5-generalized-4-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|5|4}} = {{CDD|5node_1|4|node|3|node|3|node}}<BR>625 vertices |[[File:6-generalized-4-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|6|4}} = {{CDD|6node_1|4|node|3|node|3|node}}<BR>1296 vertices |[[File:7-generalized-4-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|7|4}} = {{CDD|7node_1|4|node|3|node|3|node}}<BR>2401 vertices |[[File:8-generalized-4-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|8|4}} = {{CDD|8node_1|4|node|3|node|3|node}}<BR>4096 vertices |- align=center valign=bottom !valign=middle|<math>\mathbb{R}^5</math> |[[File:2-generalized-5-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|2|5}} = [[5-cube|{4,3,3,3}]]<BR>= {{CDD|node_1|4|node|3|node|3|node|3|node}}<BR>32 vertices !valign=middle|<math>\mathbb{C}^5</math> |[[File:3-generalized-5-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|3|5}} = {{CDD|3node_1|4|node|3|node|3|node|3|node}}<BR>243 vertices |[[File:4-generalized-5-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|4|5}} = {{CDD|4node_1|4|node|3|node|3|node|3|node}}<BR>1024 vertices |[[File:5-generalized-5-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|5|5}} = {{CDD|5node_1|4|node|3|node|3|node|3|node}}<BR>3125 vertices |[[File:6-generalized-5-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|6|5}} = {{CDD|6node_1|4|node|3|node|3|node|3|node}}<BR>7776 vertices |γ{{supsub|7|5}} = {{CDD|7node_1|4|node|3|node|3|node|3|node}}<BR>16,807 vertices |γ{{supsub|8|5}} = {{CDD|8node_1|4|node|3|node|3|node|3|node}}<BR>32,768 vertices |- align=center valign=bottom !valign=middle|<math>\mathbb{R}^6</math> |[[File:2-generalized-6-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|2|6}} = [[6-cube|{4,3,3,3,3}]]<BR>= {{CDD|node_1|4|node|3|node|3|node|3|node|3|node}}<BR>64 vertices !valign=middle|<math>\mathbb{C}^6</math> |[[File:3-generalized-6-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|3|6}} = {{CDD|3node_1|4|node|3|node|3|node|3|node|3|node}}<BR>729 vertices |[[File:4-generalized-6-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|4|6}} = {{CDD|4node_1|4|node|3|node|3|node|3|node|3|node}}<BR>4096 vertices |[[File:5-generalized-6-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|5|6}} = {{CDD|5node_1|4|node|3|node|3|node|3|node|3|node}}<BR>15,625 vertices |γ{{supsub|6|6}} = {{CDD|6node_1|4|node|3|node|3|node|3|node|3|node}}<BR>46,656 vertices |γ{{supsub|7|6}} = {{CDD|7node_1|4|node|3|node|3|node|3|node|3|node}}<BR>117,649 vertices |γ{{supsub|8|6}} = {{CDD|8node_1|4|node|3|node|3|node|3|node|3|node}}<BR>262,144 vertices |- align=center valign=bottom !valign=middle|<math>\mathbb{R}^7</math> |[[File:2-generalized-7-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|2|7}} = [[7-cube|{4,3,3,3,3,3}]]<BR>= {{CDD|node_1|4|node|3|node|3|node|3|node|3|node|3|node}}<br>128 vertices !valign=middle|<math>\mathbb{C}^7</math> |[[File:3-generalized-7-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|3|7}} = {{CDD|3node_1|4|node|3|node|3|node|3|node|3|node|3|node}}<BR>2187 vertices |γ{{supsub|4|7}} = {{CDD|4node_1|4|node|3|node|3|node|3|node|3|node|3|node}}<BR>16,384 vertices |γ{{supsub|5|7}} = {{CDD|5node_1|4|node|3|node|3|node|3|node|3|node|3|node}}<BR>78,125 vertices |γ{{supsub|6|7}} = {{CDD|6node_1|4|node|3|node|3|node|3|node|3|node|3|node}}<BR>279,936 vertices |γ{{supsub|7|7}} = {{CDD|7node_1|4|node|3|node|3|node|3|node|3|node|3|node}}<BR>823,543 vertices |γ{{supsub|8|7}} = {{CDD|8node_1|4|node|3|node|3|node|3|node|3|node|3|node}}<BR>2,097,152 vertices |- align=center valign=bottom !valign=middle|<math>\mathbb{R}^8</math> |[[File:2-generalized-8-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|2|8}} = [[8-cube|{4,3,3,3,3,3,3}]]<BR>= {{CDD|node_1|4|node|3|node|3|node|3|node|3|node|3|node|3|node}}<BR>256 vertices !valign=middle|<math>\mathbb{C}^8</math> |[[File:3-generalized-8-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|3|8}} = {{CDD|3node_1|4|node|3|node|3|node|3|node|3|node|3|node|3|node}}<BR>6561 vertices |γ{{supsub|4|8}} = {{CDD|4node_1|4|node|3|node|3|node|3|node|3|node|3|node|3|node}}<BR>65,536 vertices |γ{{supsub|5|8}} = {{CDD|5node_1|4|node|3|node|3|node|3|node|3|node|3|node|3|node}}<BR>390,625 vertices |γ{{supsub|6|8}} = {{CDD|6node_1|4|node|3|node|3|node|3|node|3|node|3|node|3|node}}<BR>1,679,616 vertices |γ{{supsub|7|8}} = {{CDD|7node_1|4|node|3|node|3|node|3|node|3|node|3|node|3|node}}<BR>5,764,801 vertices |γ{{supsub|8|8}} = {{CDD|8node_1|4|node|3|node|3|node|3|node|3|node|3|node|3|node}}<BR>16,777,216 vertices |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)