Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Incidence geometry
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Hesse configuration==== {{main|Hesse configuration}} The affine plane of order three is a {{math|(9<sub>4</sub>, 12<sub>3</sub>)}} configuration. When embedded in some ambient space it is called the '''[[Hesse configuration]]'''. It is not realizable in the Euclidean plane but is realizable in the [[complex projective plane]] as the nine [[inflection point]]s of an [[elliptic curve]] with the 12 lines incident with triples of these. The 12 lines can be partitioned into four classes of three lines apiece where, in each class the lines are mutually disjoint. These classes are called ''parallel classes'' of lines. Adding four new points, each being added to all the lines of a single parallel class (so all of these lines now intersect), and one new line containing just these four new points produces the projective plane of order three, a {{math|(13<sub>4</sub>)}} configuration. Conversely, starting with the projective plane of order three (it is unique) and removing any single line and all the points on that line produces this affine plane of order three (it is also unique). Removing one point and the four lines that pass through that point (but not the other points on them) produces the {{math|(8<sub>3</sub>)}} [[Mobius-Kantor configuration|Möbius–Kantor configuration]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)