Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Incircle and excircles
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Derivation of the formula stated above==== Use the [[Law of sines]] in the triangle <math>\triangle IAB</math>. We get <math>\frac{\overline{AI}}{\sin \frac{B}{2}} = \frac{c}{\sin \angle AIB}</math>. We have that <math>\angle AIB = \pi - \frac{A}{2} - \frac{B}{2} = \frac{\pi}{2} + \frac{C}{2}</math>. It follows that <math>\overline{AI} = c \ \frac{\sin \frac{B}{2}}{\cos \frac{C}{2}}</math>. The equality with the second expression is obtained the same way. The distances from the incenter to the vertices combined with the lengths of the triangle sides obey the equation<ref> {{citation |last1=Allaire |first1=Patricia R. |last2=Zhou |first2=Junmin |last3=Yao |first3=Haishen |date=March 2012 |journal=[[Mathematical Gazette]] |pages=161β165 |title=Proving a nineteenth century ellipse identity |volume=96 |doi=10.1017/S0025557200004277 |s2cid=124176398 }}.</ref> :<math display=block>\frac{\overline{IA} \cdot \overline{IA}}{\overline{CA} \cdot \overline{AB}} + \frac{\overline{IB} \cdot \overline{IB}}{\overline{AB} \cdot \overline{BC}} + \frac{\overline{IC} \cdot \overline{IC}}{\overline{BC} \cdot \overline{CA}} = 1.</math> Additionally,<ref>{{citation |last=Altshiller-Court |first=Nathan |author-link=Nathan Altshiller Court |title=College Geometry |publisher=Dover Publications |year=1980}}. #84, p. 121.</ref> :<math display=block>\overline{IA} \cdot \overline{IB} \cdot \overline{IC} = 4Rr^2,</math> where <math>R</math> and <math>r</math> are the triangle's [[circumradius]] and [[inradius]] respectively.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)