Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Infimum and supremum
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Arithmetic operations on sets=== The following formulas depend on a notation that conveniently generalizes arithmetic operations on sets. Throughout, <math>A, B \subseteq \R</math> are sets of real numbers. '''Sum of sets''' The [[Minkowski sum]] of two sets <math>A</math> and <math>B</math> of real numbers is the set <math display=block>A + B ~:=~ \{a + b : a \in A, b \in B\}</math> consisting of all possible arithmetic sums of pairs of numbers, one from each set. The infimum and supremum of the Minkowski sum satisfy, if <math>A \ne \varnothing \ne B</math> <math display=block>\inf (A + B) = (\inf A) + (\inf B)</math> and <math display=block>\sup (A + B) = (\sup A) + (\sup B).</math> '''Product of sets''' The multiplication of two sets <math>A</math> and <math>B</math> of real numbers is defined similarly to their Minkowski sum: <math display=block>A \cdot B ~:=~ \{a \cdot b : a \in A, b \in B\}.</math> If <math>A</math> and <math>B</math> are nonempty sets of positive real numbers then <math>\inf (A \cdot B) = (\inf A) \cdot (\inf B)</math> and similarly for suprema <math>\sup (A \cdot B) = (\sup A) \cdot (\sup B).</math><ref name="zakon">{{cite book|title=Mathematical Analysis I|first=Elias|last=Zakon|pages=39β42|publisher=Trillia Group|date=2004|url=http://www.trillia.com/zakon-analysisI.html}}</ref> '''Scalar product of a set''' The product of a real number <math>r</math> and a set <math>B</math> of real numbers is the set <math display=block>r B ~:=~ \{r \cdot b : b \in B\}.</math> If <math>r > 0</math> then <math display=block>\inf (r \cdot A) = r (\inf A) \quad \text{ and } \quad \sup (r \cdot A) = r (\sup A),</math> while if <math>r < 0</math> then <math display=block>\inf (r \cdot A) = r (\sup A) \quad \text{ and } \quad \sup (r \cdot A) = r (\inf A).</math> In the case <math>r = 0</math>, one has, if <math>A \ne \varnothing</math> <math display=block> \inf (0 \cdot A) = 0 \quad \text{ and } \quad \sup (0 \cdot A) = 0 </math> Using <math>r = -1</math> and the notation <math display=inline>-A := (-1) A = \{- a : a \in A\},</math> it follows that, <math display=block>\inf (- A) = - \sup A \quad \text{ and } \quad \sup (- A) = - \inf A.</math> '''Multiplicative inverse of a set''' For any set <math>S</math> that does not contain <math>0,</math> let <math display=block>\frac{1}{S} ~:=\; \left\{\tfrac{1}{s} : s \in S\right\}.</math> If <math>S \subseteq (0, \infty)</math> is non-empty then <math display=block>\frac{1}{\sup_{} S} ~=~ \inf_{} \frac{1}{S}</math> where this equation also holds when <math>\sup_{} S = \infty</math> if the definition <math>\frac{1}{\infty} := 0</math> is used.<ref group="note" name="DivisionByInfinityOr0">The definition <math>\tfrac{1}{\infty} := 0</math> is commonly used with the [[extended real number]]s; in fact, with this definition the equality <math>\tfrac{1}{\sup_{} S} = \inf_{} \tfrac{1}{S}</math> will also hold for any non-empty subset <math>S \subseteq (0, \infty].</math> However, the notation <math>\tfrac{1}{0}</math> is usually left undefined, which is why the equality <math>\tfrac{1}{\inf_{} S} = \sup_{} \tfrac{1}{S}</math> is given only for when <math>\inf_{} S > 0.</math></ref> This equality may alternatively be written as <math>\frac{1}{\displaystyle\sup_{s \in S} s} = \inf_{s \in S} \tfrac{1}{s}.</math> Moreover, <math>\inf_{} S = 0</math> if and only if <math>\sup_{} \tfrac{1}{S} = \infty,</math> where if<ref group=note name="DivisionByInfinityOr0" /> <math>\inf_{} S > 0,</math> then <math>\tfrac{1}{\inf_{} S} = \sup_{} \tfrac{1}{S}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)