Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Integral equation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Volterra integral equations == === Uniqueness and existence theorems in 1D === The solution to a linear Volterra integral equation of the first kind, given by the equation:<math display="block">(\mathcal{V}y)(t)=g(t)</math>can be described by the following uniqueness and existence theorem.<ref name=":2" /> Recall that the Volterra integral operator <math>\mathcal{V} : C(I) \to C(I)</math>, can be defined as follows:<ref name=":2" /><math display="block">(\mathcal{V} \varphi)(t) := \int_{t_0}^t K(t,s) \, \varphi(s) \, ds</math>where <math>t \in I = [t_0 , T]</math> and ''K''(''t'',''s'') is called the kernel and must be continuous on the interval <math>D := \{(t,s) : 0 \leq s \leq t \leq T \leq \infty\}</math>.<ref name=":2" /> {{Math theorem | math_statement = Assume that <math> K </math> satisfies <math> K \in C(D), \, \partial K / \partial t \in C(D) </math> and <math> \vert K(t,t) \vert \geq k_0 > 0 </math> for some <math> t \in I. </math> Then for any <math> g\in C^1(I) </math> with <math> g(0)=0 </math> the integral equation above has a unique solution in <math> y \in C(I)</math>. }} The solution to a linear Volterra integral equation of the second kind, given by the equation:<ref name=":2" /><math display="block">y(t)=g(t)+(\mathcal{V} y)(t)</math>can be described by the following uniqueness and existence theorem.<ref name=":2" /> {{Math theorem | math_statement = Let <math> K \in C(D) </math> and let <math>R </math> denote the resolvent Kernel associated with <math> K </math>. Then, for any <math>g \in C(I) </math>, the second-kind Volterra integral equation has a unique solution <math>y \in C(I) </math> and this solution is given by: <math>y(t)=g(t)+\int_0^t R(t,s) \, g(s) \, ds.</math> }} === Volterra integral equations in {{math|R{{sup|2}}}}=== A Volterra Integral equation of the second kind can be expressed as follows:<ref name=":2" /><math display="block">u(t,x) = g(t,x)+\int_0^x \int_0^y K(x,\xi, y, \eta) \, u(\xi, \eta) \, d\eta \, d\xi</math>where <math>(x,y) \in \Omega := [0,X] \times [0,Y]</math>, <math>g \in C( \Omega)</math>, <math>K \in C(D_2)</math> and <math>D_2 := \{(x, \xi,y,\eta): 0 \leq \xi \leq x \leq X, 0 \leq \eta \leq y \leq Y\}</math>.<ref name=":2" /> This integral equation has a unique solution <math>u \in C( \Omega)</math> given by:<ref name=":2" /><math display="block">u(t,x) = g(t,x)+\int_0^x \int_0^{y} R(x,\xi, y, \eta) \, g(\xi, \eta) \, d\eta \, d\xi</math>where <math>R</math> is the resolvent kernel of ''K''.<ref name=":2" /> === Uniqueness and existence theorems of Fredholm–Volterra equations === As defined above, a VFIE has the form:<math display="block">u(t,x) = g(t,x)+(\mathcal{T}u)(t,x)</math>with <math>x \in \Omega</math> and <math>\Omega</math> being a closed bounded region in <math>\mathbb{R}^d</math> with piecewise smooth boundary.<ref name=":2" /> The Fredholm–Volterrra Integral Operator <math>\mathcal{T} : C(I \times \Omega) \to C(I \times \Omega)</math> is defined as:<ref name=":2" /><math display="block">(\mathcal{T}u)(t,x) := \int_0^t \int_\Omega K(t,s,x,\xi) \, G(u(s, \xi)) \, d\xi \, ds.</math>In the case where the Kernel ''K'' may be written as <math>K(t,s,x,\xi) = k(t-s)H(x, \xi)</math>, ''K'' is called the positive memory kernel.<ref name=":2" /> With this in mind, we can now introduce the following theorem:<ref name=":2" /> {{Math theorem | math_statement = If the linear VFIE given by: <math> u(t,x) = g(t,x) + \int_0^t \int_{\Omega} K(t,s,x,\xi) \, G(u(s, \xi)) \, d\xi \, ds </math> with <math> (t,x) \in I \times \Omega </math> satisfies the following conditions: * <math>g \in C(I \times \Omega)</math>, and * <math> K \in C(D \times \Omega^2) </math> where <math> D:= \{(t,s): 0 \leq s \leq t \leq T \} </math> and <math> \Omega^2 = \Omega \times \Omega</math> Then the VFIE has a unique solution <math> u \in C(I \times \Omega) </math> given by <math> u(t,x) = g(t,x)+\int_0^t \int_{\Omega} R(t,s,x,\xi) \, G(u(s, \xi)) \, d\xi \, ds </math> where <math> R \in C(D \times \Omega^2) </math> is called the Resolvent Kernel and is given by the limit of the Neumann series for the Kernel <math> K </math> and solves the resolvent equations: <math> R(t,s,x,\xi) = K(t,s,x,\xi)+\int_0^t \int_\Omega K(t,v,x,z) R(v,s,z,\xi) \, dz \, dv = K(t,s,x,\xi)+\int_0^t \int_\Omega R(t,v,x,z) K(v,s,z,\xi) \, dz \, dv </math> }} === Special Volterra equations === A special type of Volterra equation which is used in various applications is defined as follows:<ref name=":2" /><math display="block">y(t)=g(t)+(V_\alpha y)(t)</math>where <math>t \in I = [t_0 , T]</math>, the function ''g''(''t'') is continuous on the interval <math>I</math>, and the Volterra integral operator <math>(V_\alpha t)</math> is given by:<math display="block">(V_\alpha t)(t) := \int_{t_0}^t (t-s)^{-\alpha} \cdot k(t,s,y(s)) \, ds </math>with <math>(0 \leq \alpha < 1)</math>.<ref name=":2" />
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)