Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Interval tree
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Deletion === If after deleting an interval from the tree, the node containing that interval contains no more intervals, that node may be deleted from the tree. This is more complex than a normal binary tree deletion operation. An interval may overlap the center point of several nodes in the tree. Since each node stores the intervals that overlap it, with all intervals completely to the left of its center point in the left subtree, similarly for the right subtree, it follows that each interval is stored in the node closest to the root from the set of nodes whose center point it overlaps. Normal deletion operations in a binary tree (for the case where the node being deleted has two children) involve promoting a node further from the leaf to the position of the node being deleted (usually the leftmost child of the right subtree, or the rightmost child of the left subtree). [[File:binary search tree delete.svg|thumb|640px|center|Deleting a node with two children from a binary search tree using the in-order predecessor (rightmost node in the left subtree, labelled '''6''').]] As a result of this promotion, some nodes that were above the promoted node will become its descendants; it is necessary to search these nodes for intervals that also overlap the promoted node, and move those intervals into the promoted node. As a consequence, this may result in new empty nodes, which must be deleted, following the same algorithm again.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)