Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Inverse trigonometric functions
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Transforming equations=== The equations above can be transformed by using the reflection and shift identities:<ref>{{harvnb|Abramowitz|Stegun|1972|loc=p. 73, 4.3.44}}</ref> {| class="wikitable" style="text-align: center;" |+ Transforming equations by shifts and reflections |- ! scope="col" | Argument: <math>\underline{\;~~~~~~\;}=</math> ! scope="col" |<math>-\theta</math> ! scope="col" |<math>\frac{\pi}{2} \pm \theta</math> ! scope="col" |<math>\pi \pm \theta</math> ! scope="col" |<math>\frac{3\pi}{2} \pm \theta</math> ! scope="col" |<math>2 k \pi \pm \theta,</math><br/> <math>(k \in \Z)</math> |- <!-- sin --> ! scope="row" |<math>\sin \underline{\;~~~~~~~~~~~~~~\;}=</math> | <math>-\sin \theta</math> | <math>\phantom{-}\cos \theta</math> | <math>\mp\sin \theta</math> | <math>-\cos \theta</math> | <math>\pm\sin \theta</math> |- <!-- csc --> ! scope="row" |<math>\csc \underline{\;~~~~~~~~~~~~~~\;}=</math> | <math>-\csc \theta</math> | <math>\phantom{-}\sec \theta</math> | <math>\mp\csc \theta</math> | <math>-\sec \theta</math> | <math>\pm\csc \theta</math> |- <!-- cos --> ! scope="row" |<math>\cos \underline{\;~~~~~~~~~~~~~~\;}=</math> | <math>\phantom{-}\cos \theta</math> | <math>\mp\sin \theta</math> | <math>-\cos \theta</math> | <math>\pm\sin \theta</math> | <math>\phantom{-}\cos \theta</math> |- <!-- sec --> ! scope="row" |<math>\sec \underline{\;~~~~~~~~~~~~~~\;}=</math> | <math>\phantom{-}\sec \theta</math> | <math>\mp\csc \theta</math> | <math>-\sec \theta</math> | <math>\pm\csc \theta</math> | <math>\phantom{-}\sec \theta</math> |- <!-- tan --> ! scope="row" |<math>\tan \underline{\;~~~~~~~~~~~~~~\;}=</math> | <math>-\tan \theta</math> | <math>\mp\cot \theta</math> | <math>\pm\tan \theta</math> | <math>\mp\cot \theta</math> | <math>\pm\tan \theta</math> |- <!-- cot --> ! scope="row" |<math>\cot \underline{\;~~~~~~~~~~~~~~\;}=</math> | <math>-\cot \theta</math> | <math>\mp\tan \theta</math> | <math>\pm\cot \theta</math> | <math>\mp\tan \theta</math> | <math>\pm\cot \theta</math> |} These formulas imply, in particular, that the following hold: <math display=block> \begin{align} \sin \theta &= -\sin(-\theta) &&= -\sin(\pi+\theta) &&= \phantom{-}\sin(\pi-\theta) \\ &= -\cos\left(\frac{\pi}{2}+\theta\right) &&= \phantom{-}\cos\left(\frac{\pi}{2}-\theta\right) &&= -\cos\left(-\frac{\pi}{2}-\theta\right) \\ &= \phantom{-}\cos\left(-\frac{\pi}{2}+\theta\right) &&= -\cos\left(\frac{3\pi}{2}-\theta\right) &&= -\cos\left(-\frac{3\pi}{2}+\theta\right) \\[0.3ex] \cos \theta &= \phantom{-}\cos(-\theta) &&= -\cos(\pi+\theta) &&= -\cos(\pi-\theta) \\ &= \phantom{-}\sin\left(\frac{\pi}{2}+\theta\right) &&= \phantom{-}\sin\left(\frac{\pi}{2}-\theta\right) &&= -\sin\left(-\frac{\pi}{2}-\theta\right) \\ &= -\sin\left(-\frac{\pi}{2}+\theta\right) &&= -\sin\left(\frac{3\pi}{2}-\theta\right) &&= \phantom{-}\sin\left(-\frac{3\pi}{2}+\theta\right) \\[0.3ex] \tan \theta &= -\tan(-\theta) &&= \phantom{-}\tan(\pi+\theta) &&= -\tan(\pi-\theta) \\ &= -\cot\left(\frac{\pi}{2}+\theta\right) &&= \phantom{-}\cot\left(\frac{\pi}{2}-\theta\right) &&= \phantom{-}\cot\left(-\frac{\pi}{2}-\theta\right) \\ &= -\cot\left(-\frac{\pi}{2}+\theta\right) &&= \phantom{-}\cot\left(\frac{3\pi}{2}-\theta\right) &&= -\cot\left(-\frac{3\pi}{2}+\theta\right) \\[0.3ex] \end{align} </math> where swapping <math>\sin \leftrightarrow \csc,</math> swapping <math>\cos \leftrightarrow \sec,</math> and swapping <math>\tan \leftrightarrow \cot</math> gives the analogous equations for <math>\csc, \sec, \text{ and } \cot,</math> respectively. So for example, by using the equality <math display="inline">\sin \left(\frac{\pi}{2}-\theta\right) = \cos \theta,</math> the equation <math>\cos \theta = x</math> can be transformed into <math display="inline">\sin \left(\frac{\pi}{2}-\theta\right) = x,</math> which allows for the solution to the equation <math>\;\sin \varphi = x\;</math> (where <math display="inline">\varphi := \frac{\pi}{2}-\theta</math>) to be used; that solution being: <math>\varphi = (-1)^k \arcsin (x)+\pi k \; \text{ for some } k \in \Z,</math> which becomes: <math display="block">\frac{\pi}{2}-\theta ~=~ (-1)^k \arcsin (x)+\pi k \quad \text{ for some } k \in \Z</math> where using the fact that <math>(-1)^{k} = (-1)^{-k}</math> and substituting <math>h :=-k</math> proves that another solution to <math>\;\cos \theta = x\;</math> is: <math display="block">\theta ~=~ (-1)^{h+1} \arcsin (x)+\pi h+\frac{\pi}{2} \quad \text{ for some } h \in \Z.</math> The substitution <math>\;\arcsin x = \frac{\pi}{2}-\arccos x\;</math> may be used express the right hand side of the above formula in terms of <math>\;\arccos x\;</math> instead of <math>\;\arcsin x.\;</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)