Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Jet bundle
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Vector fields== A general [[vector field]] on the total space ''E'', coordinated by <math>(x, u) \mathrel\stackrel{\mathrm{def}}{=} \left(x^i, u^\alpha\right)\,</math>, is :<math>V \mathrel\stackrel{\mathrm{def}}{=} \rho^i(x, u)\frac{\partial}{\partial x^i} + \phi^{\alpha}(x, u)\frac{\partial}{\partial u^\alpha}.\,</math> A vector field is called '''horizontal''', meaning that all the vertical coefficients vanish, if <math>\phi^\alpha</math> = 0. A vector field is called '''vertical''', meaning that all the horizontal coefficients vanish, if ''Ο<sup>i</sup>'' = 0. For fixed ''(x, u)'', we identify :<math>V_{(x, u)} \mathrel\stackrel{\mathrm{def}}{=} \rho^i(x, u) \frac{\partial}{\partial x^i} + \phi^{\alpha}(x, u) \frac{\partial}{\partial u^\alpha}\,</math> having coordinates ''(x, u, Ο<sup>i</sup>, Ο<sup>Ξ±</sup>)'', with an element in the fiber ''T<sub>xu</sub>E'' of ''TE'' over ''(x, u)'' in ''E'', called '''a [[tangent vector]] in ''TE'''''. A section :<math>\begin{cases} \psi : E \to TE \\ (x, u) \mapsto \psi(x, u) = V \end{cases}</math> is called '''a vector field on ''E''''' with :<math>V = \rho^i(x, u) \frac{\partial}{\partial x^i} + \phi^\alpha(x, u) \frac{\partial}{\partial u^\alpha}</math> and Ο in ''Ξ(TE)''. The jet bundle ''J<sup>r</sup>(Ο)'' is coordinated by <math>(x, u, w) \mathrel\stackrel{\mathrm{def}}{=} \left(x^i, u^\alpha, w_i^\alpha\right)\,</math>. For fixed ''(x, u, w)'', identify :<math> V_{(x, u, w)} \mathrel\stackrel{\mathrm{def}}{=} V^i(x, u, w) \frac{\partial}{\partial x^i} + V^\alpha(x, u, w) \frac{\partial}{\partial u^\alpha} + V^\alpha_i(x, u, w) \frac{\partial}{\partial w^\alpha_i} + V^\alpha_{i_1 i_2}(x, u, w) \frac{\partial}{\partial w^\alpha_{i_1 i_2}} + \cdots + V^\alpha_{i_1 \cdots i_r}(x, u, w) \frac{\partial}{\partial w^\alpha_{i_1 \cdots i_r}} </math> having coordinates :<math>\left(x, u, w, v^\alpha_i, v^\alpha_{i_1 i_2}, \cdots, v^\alpha_{i_1 \cdots i_r}\right),</math> with an element in the fiber <math>T_{xuw}(J^r\pi)</math> of ''TJ<sup>r</sup>(Ο)'' over ''(x, u, w)'' β ''J<sup>r</sup>(Ο)'', called '''a tangent vector in ''TJ<sup>r</sup>(Ο)'''''. Here, :<math>v^\alpha_i, v^\alpha_{i_1 i_2}, \ldots, v^\alpha_{i_1 \cdots i_r}</math> are real-valued functions on ''J<sup>r</sup>(Ο)''. A section :<math>\begin{cases} \Psi : J^r(\pi) \to TJ^r(\pi) \\ (x, u, w) \mapsto \Psi(u, w) = V \end{cases}</math> is '''a vector field on ''J<sup>r</sup>(Ο)''''', and we say <math>\Psi \in \Gamma(T\left(J^r\pi\right)).</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)