Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Joint probability distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Discrete case=== The joint [[probability mass function]] of two [[discrete random variable]]s <math>X, Y</math> is: {{Equation box 1 |indent = |title= |equation = {{NumBlk||<math>p_{X,Y}(x,y) = \mathrm{P}(X=x\ \mathrm{and}\ Y=y)</math>|{{EquationRef|Eq.3}}}} |cellpadding= 6 |border |border colour = #0073CF |background colour=#F5FFFA}} or written in terms of conditional distributions :<math>p_{X,Y}(x,y) = \mathrm{P}(Y=y \mid X=x) \cdot \mathrm{P}(X=x) = \mathrm{P}(X=x \mid Y=y) \cdot \mathrm{P}(Y=y)</math> where <math> \mathrm{P}(Y=y \mid X=x) </math> is the [[conditional probability|probability]] of <math> Y = y </math> given that <math> X = x </math>. The generalization of the preceding two-variable case is the joint probability distribution of <math>n\,</math> discrete random variables <math>X_1, X_2, \dots,X_n</math> which is: {{Equation box 1 |indent = |title= |equation = {{NumBlk||<math>p_{X_1,\ldots,X_n}(x_1,\ldots,x_n) = \mathrm{P}(X_1=x_1\text{ and }\dots\text{ and }X_n=x_n)</math>|{{EquationRef|Eq.4}}}} |cellpadding= 6 |border |border colour = #0073CF |background colour=#F5FFFA}} or equivalently :<math> \begin{align} p_{X_1,\ldots,X_n}(x_1,\ldots,x_n) & = \mathrm{P}(X_1=x_1) \cdot \mathrm{P}(X_2=x_2\mid X_1=x_1) \\ & \cdot \mathrm{P}(X_3=x_3\mid X_1=x_1,X_2=x_2) \\ & \dots \\ & \cdot P(X_n=x_n\mid X_1=x_1,X_2=x_2,\dots,X_{n-1}=x_{n-1}). \end{align} </math>. This identity is known as the [[Chain rule (probability)|chain rule of probability]]. Since these are probabilities, in the two-variable case :<math>\sum_i \sum_j \mathrm{P}(X=x_i\ \mathrm{and}\ Y=y_j) = 1,\,</math> which generalizes for <math>n\,</math> discrete random variables <math>X_1, X_2, \dots , X_n</math> to :<math>\sum_{i} \sum_{j} \dots \sum_{k} \mathrm{P}(X_1=x_{1i},X_2=x_{2j}, \dots, X_n=x_{nk}) = 1.\;</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)