Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Jupiter
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Cloud layers ==== [[File:790106-0203 Voyager 58M to 31M reduced.gif|thumb|alt=Black and white animation of Jupiter's clouds by ''Voyager 1'' as the spacecraft approaches the planet|Timelapse of Jupiter's cloud system moving over the course of one month (photographed during ''[[Voyager 1]]'' flyby in 1979)]] Jupiter is perpetually covered with clouds of ammonia crystals, which may contain [[ammonium hydrosulfide]] as well.<ref>{{cite journal | title=Coloring Jupiter's clouds: Radiolysis of ammonium hydrosulfide (NH4SH) | last1=Loeffler | first1=Mark J. | last2=Hudson | first2=Reggie L. | journal=Icarus | volume=302 | pages=418–425 | date=March 2018 | doi=10.1016/j.icarus.2017.10.041 | bibcode=2018Icar..302..418L | url=https://science.gsfc.nasa.gov/691/cosmicice/reprints/NH4SH_Icarus_Loeffler_Hudson_2018.pdf |archive-url=https://ghostarchive.org/archive/20221009/https://science.gsfc.nasa.gov/691/cosmicice/reprints/NH4SH_Icarus_Loeffler_Hudson_2018.pdf |archive-date=October 9, 2022 |url-status=live | access-date=April 25, 2022 }}</ref> The clouds are located in the [[tropopause]] layer of the atmosphere, forming bands at different latitudes, known as tropical regions. These are subdivided into lighter-hued ''zones'' and darker ''belts''. The interactions of these conflicting [[Atmospheric circulation|circulation]] patterns cause storms and [[turbulence]]. Wind speeds of {{convert|100|m/s|km/h mph}} are common in [[Jet stream#Other planets|zonal jet streams]].<ref>{{cite book | chapter=Dynamics of Jupiter's Atmosphere | last1=Ingersoll | first1=Andrew P. | author-link1=Andrew Ingersoll | last2=Dowling | first2=Timothy E. | last3=Gierasch | first3=Peter J. | last4=Orton | first4=Glenn S. | last5=Read | first5=Peter L. | last6=Sánchez-Lavega | first6=Agustin | last7=Showman | first7=Adam P. | last8=Simon-Miller | first8=Amy A. | last9=Vasavada | first9=Ashwin R. | title=Jupiter. The Planet, Satellites and Magnetosphere | editor1-first=Fran | editor1-last=Bagenal | editor2-first=Timothy E. | editor2-last=Dowling | editor3-first=William B. | editor3-last=McKinnon | series=Cambridge planetary science | volume=1 | publication-place=Cambridge, UK | publisher=Cambridge University Press | isbn=0-521-81808-7 | date=2004 | pages=105–128 | bibcode=2004jpsm.book..105I | url=https://authors.library.caltech.edu/36015/1/Ingersoll_p105.pdf |archive-url=https://ghostarchive.org/archive/20221009/https://authors.library.caltech.edu/36015/1/Ingersoll_p105.pdf |archive-date=October 9, 2022 |url-status=live | access-date=March 8, 2022 }}</ref> The zones have been observed to vary in width, colour and intensity from year to year, but they have remained stable enough for scientists to name them.<ref name="burgess"/>{{rp|6}} The cloud layer is about {{cvt|50|km|0}} deep and consists of at least two decks of ammonia clouds: a thin, clearer region on top and a thicker, lower deck. There may be a thin layer of [[water (properties)|water]] clouds underlying the ammonia clouds, as suggested by flashes of [[lightning]] detected in the atmosphere of Jupiter.<ref>{{cite journal | title=Lightning Generation in Moist Convective Clouds and Constraints on the Water Abundance in Jupiter | last1=Aglyamov | first1=Yury S. | last2=Lunine | first2=Jonathan | last3=Becker | first3=Heidi N. |author3-link=Heidi N. Becker| last4=Guillot | first4=Tristan | last5=Gibbard | first5=Seran G. | last6=Atreya | first6=Sushil | last7=Bolton | first7=Scott J. | last8=Levin | first8=Steven | last9=Brown | first9=Shannon T. | last10=Wong | first10=Michael H. | journal=Journal of Geophysical Research: Planets | volume=126 | issue=2 | id=e06504 | date=February 2021 | doi=10.1029/2020JE006504 | arxiv=2101.12361 | bibcode=2021JGRE..12606504A | s2cid=231728590 }}</ref> These electrical discharges can be up to a thousand times as powerful as lightning on Earth.<ref>{{cite web |editor1-last=Watanabe |editor1-first=Susan |date=February 25, 2006 |url=http://www.nasa.gov/vision/universe/solarsystem/galileo_end.html |title=Surprising Jupiter: Busy Galileo spacecraft showed jovian system is full of surprises |publisher=NASA |access-date=February 20, 2007 |archive-date=October 8, 2011 |archive-url=https://web.archive.org/web/20111008010724/http://www.nasa.gov/vision/universe/solarsystem/galileo_end.html |url-status=dead }}</ref> The water clouds are assumed to generate thunderstorms in the same way as terrestrial thunderstorms, driven by the heat rising from the interior.<ref>{{cite journal |last=Kerr |first=Richard A. |author-link=Richard Kerr (science journalist) |title=Deep, Moist Heat Drives Jovian Weather |journal=Science |year=2000 |volume=287 |issue=5455 |pages=946–947 |doi=10.1126/science.287.5455.946b |s2cid=129284864 |url=https://www.proquest.com/openview/d4cfc37399ab62ac9e0668fd231cb072/1?pq-origsite=gscholar&cbl=1256 |access-date=April 26, 2022 |archive-date=February 3, 2023 |archive-url=https://web.archive.org/web/20230203043417/https://www.proquest.com/openview/d4cfc37399ab62ac9e0668fd231cb072/1?pq-origsite=gscholar&cbl=1256 |url-status=live }}</ref> The Juno mission revealed the presence of "shallow lightning" which originates from ammonia-water clouds relatively high in the atmosphere.<ref>{{cite journal | title=Small lightning flashes from shallow electrical storms on Jupiter | last1=Becker | first1=Heidi N. | author1-link=Heidi N. Becker | last2=Alexander | first2=James W. | last3=Atreya | first3=Sushil K. | last4=Bolton | first4=Scott J. | last5=Brennan | first5=Martin J. | last6=Brown | first6=Shannon T. | last7=Guillaume | first7=Alexandre | last8=Guillot | first8=Tristan | last9=Ingersoll | first9=Andrew P. | last10=Levin | first10=Steven M. | last11=Lunine | first11=Jonathan I. | last12=Aglyamov | first12=Yury S. | last13=Steffes | first13=Paul G. | journal=Nature | volume=584 | issue=7819 | pages=55–58 | year=2020 | doi=10.1038/s41586-020-2532-1 | pmid=32760043 | bibcode=2020Natur.584...55B | s2cid=220980694 | issn=0028-0836 | url=https://hal.archives-ouvertes.fr/hal-03058480 | access-date=March 6, 2021 | archive-date=September 29, 2021 | archive-url=https://web.archive.org/web/20210929074856/https://hal.archives-ouvertes.fr/hal-03058480 | url-status=live }}</ref> These discharges carry "mushballs" of water-ammonia slushes covered in ice, which fall deep into the atmosphere.<ref>{{cite journal | title=Storms and the Depletion of Ammonia in Jupiter: I. Microphysics of "Mushballs" | last1=Guillot | first1=Tristan | last2=Stevenson | first2=David J. | last3=Atreya | first3=Sushil K. | last4=Bolton | first4=Scott J. | last5=Becker | first5=Heidi N.|author5-link=Heidi N. Becker | journal=Journal of Geophysical Research: Planets | year=2020 | volume=125 | issue=8 | page=e2020JE006403 | doi=10.1029/2020JE006404 | arxiv=2012.14316 | bibcode=2020JGRE..12506403G | s2cid=226194362 }}</ref> [[Upper-atmospheric lightning]] has been observed in Jupiter's upper atmosphere, bright flashes of light that last around 1.4{{Nbsp}}milliseconds. These are known as "elves" or "sprites" and appear blue or pink due to the hydrogen.<ref>{{cite journal | title=Possible Transient Luminous Events Observed in Jupiter's Upper Atmosphere | last1=Giles | first1=Rohini S. | last2=Greathouse | first2=Thomas K. | last3=Bonfond | first3=Bertrand | last4=Gladstone | first4=G. Randall | last5=Kammer | first5=Joshua A. | last6=Hue | first6=Vincent | last7=Grodent | first7=Denis C. | last8=Gérard | first8=Jean-Claude | last9=Versteeg | first9=Maarten H. | last10=Wong | first10=Michael H. | last11=Bolton | first11=Scott J. | last12=Connerney | first12=John E. P. | last13=Levin | first13=Steven M. | journal=Journal of Geophysical Research: Planets | year=2020 | volume=125 | issue=11 | pages=e06659 | id=e06659 | doi=10.1029/2020JE006659 | arxiv=2010.13740 | bibcode=2020JGRE..12506659G | s2cid=225075904 }}</ref><ref>{{cite web | title=Juno Data Indicates 'Sprites' or 'Elves' Frolic in Jupiter's Atmosphere | date=October 27, 2020 | editor-first=Tony | editor-last=Greicius | website=NASA | url=https://www.nasa.gov/feature/jpl/juno-data-indicates-sprites-or-elves-frolic-in-jupiters-atmosphere | access-date=December 30, 2020 | archive-date=January 27, 2021 | archive-url=https://web.archive.org/web/20210127211238/https://www.nasa.gov/feature/jpl/juno-data-indicates-sprites-or-elves-frolic-in-jupiters-atmosphere/ | url-status=live }}</ref> The orange and brown colours in the clouds of Jupiter are caused by upwelling compounds that change colour when they are exposed to ultraviolet light from the Sun. The exact makeup remains uncertain, but the substances are thought to be made up of phosphorus, sulfur or possibly hydrocarbons.<ref name="elkins-tanton"/>{{rp|39}}<ref>{{cite conference | last1=Strycker | first1=P. D. | last2=Chanover | first2=N. | last3=Sussman | first3=M. | last4=Simon-Miller | first4=A. |title=A Spectroscopic Search for Jupiter's Chromophores |work=DPS meeting No. 38, #11.15 |publisher=American Astronomical Society |year=2006 |bibcode=2006DPS....38.1115S}}</ref> These colourful compounds, known as [[chromophore]]s, mix with the warmer clouds of the lower deck. The light-coloured zones are formed when rising [[convection cell]]s form crystallising ammonia that hides the chromophores from view.<ref name="worldbook">{{cite web | last1=Gierasch | first1=Peter J. | last2=Nicholson | first2=Philip D. |author-link2=Phil Nicholson|year=2004 | url=http://www.nasa.gov/worldbook/jupiter_worldbook.html |archive-url=https://web.archive.org/web/20050105155019/http://www.nasa.gov/worldbook/jupiter_worldbook.html | url-status=dead | archive-date=January 5, 2005 | title=Jupiter | publisher=World Book @ NASA | access-date=August 10, 2006 }}</ref> Jupiter has a low [[axial tilt]], thus ensuring that the poles always receive less [[solar radiation]] than the planet's equatorial region. [[Convection]] within the interior of the planet transports energy to the poles, balancing out temperatures at the cloud layer.<ref name="burgess"/>{{rp|54}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)