Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Kleene's recursion theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Application to elimination of recursion === Suppose that <math>g</math> and <math>h</math> are total computable functions that are used in a recursive definition for a function <math>f</math>: :<math>f(0,y) \simeq g(y),</math> :<math>f(x+1,y) \simeq h(f(x,y),x,y),</math> The second recursion theorem can be used to show that such equations define a computable function, where the notion of computability does not have to allow, prima facie, for recursive definitions (for example, it may be defined by [[M-recursive function|μ-recursion]], or by [[Turing machine]]s). This recursive definition can be converted into a computable function <math>\varphi_{F}(e,x,y)</math> that assumes <math>e</math> is an index to itself, to simulate recursion: :<math>\varphi_{F}(e,0,y) \simeq g(y),</math> :<math>\varphi_{F}(e,x+1,y) \simeq h(\varphi_e(x,y),x,y).</math> The recursion theorem establishes the existence of a computable function <math>\varphi_f</math> such that <math>\varphi_f(x,y) \simeq \varphi_{F}(f,x,y)</math>. Thus <math>f</math> satisfies the given recursive definition.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)