Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Lambert W function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Asymptotic expansions == The [[Taylor series]] of {{math|''W''<sub>0</sub>}} around 0 can be found using the [[Lagrange inversion theorem]] and is given by : <math>W_0(x)=\sum_{n=1}^\infty \frac{(-n)^{n-1}}{n!}x^n =x-x^2+\tfrac{3}{2}x^3-\tfrac{16}{6}x^4+\tfrac{125}{24}x^5-\cdots.</math> The [[radius of convergence]] is {{math|{{sfrac|1|''e''}}}}, as may be seen by the [[ratio test]]. The function defined by this series can be extended to a [[holomorphic function]] defined on all complex numbers with a [[branch cut]] along the [[interval (mathematics)|interval]] {{open-closed|ββ, β{{sfrac|1|''e''}}}}; this holomorphic function defines the [[principal branch]] of the Lambert {{mvar|W}} function. For large values of {{mvar|x}}, {{math|''W''<sub>0</sub>}} is asymptotic to : <math>\begin{align} W_0(x) &= L_1 - L_2 + \frac{L_2}{L_1} + \frac{L_2\left(-2 + L_2\right)}{2L_1^2} + \frac{L_2\left(6 - 9L_2 + 2L_2^2\right)}{6L_1^3} + \frac{L_2\left(-12 + 36L_2 - 22L_2^2 + 3L_2^3\right)}{12L_1^4} + \cdots \\[5pt] &= L_1 - L_2 + \sum_{l=0}^\infty \sum_{m=1}^\infty \frac{(-1)^l \left[ \begin{smallmatrix} l + m \\ l + 1 \end{smallmatrix} \right]}{m!} L_1^{-l-m} L_2^m, \end{align}</math> where {{math|1=''L''<sub>1</sub> = ln ''x''}}, {{math|1=''L''<sub>2</sub> = ln ln ''x''}}, and {{math|<big><big>[</big></big>{{su|p=''l'' + ''m''|b=''l'' + 1|a=c}}<big><big>]</big></big>}} is a non-negative [[Stirling numbers of the first kind|Stirling number of the first kind]].<ref name = "Corless" /> Keeping only the first two terms of the expansion, : <math>W_0(x) = \ln x - \ln \ln x + \mathcal{o}(1).</math> The other real branch, {{math|''W''<sub>β1</sub>}}, defined in the interval {{closed-open|β{{sfrac|1|''e''}}, 0}}, has an approximation of the same form as {{mvar|x}} approaches zero, with in this case {{math|1=''L''<sub>1</sub> = ln(β''x'')}} and {{math|1=''L''<sub>2</sub> = ln(βln(β''x''))}}.<ref name = "Corless" /> === Integer and complex powers === Integer powers of {{math|''W''<sub>0</sub>}} also admit simple [[Taylor series|Taylor]] (or [[Laurent series|Laurent]]) series expansions at zero: : <math> W_0(x)^2 = \sum_{n=2}^\infty \frac{-2\left(-n\right)^{n-3}}{(n - 2)!} x^n = x^2 - 2x^3 + 4x^4 - \tfrac{25}{3}x^5 + 18x^6 - \cdots. </math> More generally, for {{math|''r'' β '''Z'''}}, the [[Lagrange inversion theorem|Lagrange inversion formula]] gives : <math> W_0(x)^r = \sum_{n=r}^\infty \frac{-r\left(-n\right)^{n - r - 1}}{(n - r)!} x^n, </math> which is, in general, a Laurent series of order {{mvar|r}}. Equivalently, the latter can be written in the form of a Taylor expansion of powers of {{math|''W''<sub>0</sub>(''x'') / ''x''}}: : <math> \left(\frac{W_0(x)}{x}\right)^r = e^{-r W_0(x)} = \sum_{n=0}^\infty \frac{r\left(n + r\right)^{n - 1}}{n!} \left(-x\right)^n, </math> which holds for any {{math|''r'' β '''C'''}} and {{math|{{abs|''x''}} < {{sfrac|1|''e''}}}}.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)