Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Line element
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Line elements in 4d spacetime== ===Minkowski spacetime=== The [[Minkowski metric]] is:<ref>Relativity DeMystified, D. McMahon, Mc Graw Hill (USA), 2006, {{isbn|0-07-145545-0}}</ref><ref name="WheelerMisnerThorne"/> <math display="block">[g_{ij}] = \pm \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ \end{pmatrix}</math> where one sign or the other is chosen, both conventions are used. This applies only for [[flat spacetime]]. The coordinates are given by the [[4-position]]: <math display="block">\mathbf{x} = (x^0,x^1,x^2,x^3) = (ct,\mathbf{r}) \,\Rightarrow\, d\mathbf{x} = (c dt, d\mathbf{r})</math> so the line element is: <math display="block">ds^2 = \pm (c^2 dt^2 - d\mathbf{r} \cdot d\mathbf{r}) .</math> ===Schwarzschild coordinates=== In [[Schwarzschild coordinates]] coordinates are <math> \left(t, r, \theta, \phi \right)</math>, being the general metric of the form: <math display="block">[g_{ij}] = \begin{pmatrix} -a(r)^2 & 0 & 0 & 0 \\ 0 & b(r)^2 & 0 & 0 \\ 0 & 0 & r^2 & 0 \\ 0 & 0 & 0 & r^2 \sin^2\theta \\ \end{pmatrix}</math> (note the similitudes with the metric in 3D spherical polar coordinates). so the line element is: <math display="block">ds^2 = -a(r)^2 \, dt^2 + b(r)^2 \, dr^2 + r^2 \, d\theta^2 + r^2 \sin^2\theta \, d\phi^2 .</math> ===General spacetime=== The coordinate-independent definition of the square of the line element d''s'' in [[Spacetime#Spacetime intervals|spacetime]] is:<ref name="WheelerMisnerThorne"/> <math display="block"> ds^2 = d\mathbf{x} \cdot d\mathbf{x} = g(d\mathbf{x},d\mathbf{x}) </math> In terms of coordinates: <math display="block"> ds^2 = g_{\alpha\beta} dx^\alpha dx^\beta </math> where for this case the indices {{math|''Ξ±''}} and {{math|''Ξ²''}} run over 0, 1, 2, 3 for spacetime. This is the [[spacetime interval]] - the measure of separation between two arbitrarily close [[Event (relativity)|events]] in [[spacetime]]. In [[special relativity]] it is invariant under [[Lorentz transformation]]s. In [[general relativity]] it is invariant under arbitrary [[inverse function|invertible]] [[Differentiable function|differentiable]] [[coordinate transformations]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)