Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Linear-feedback shift register
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Example polynomials for maximal LFSRs == The following table lists examples of maximal-length feedback polynomials ([[Primitive polynomial (field theory)|primitive polynomials]]) for shift-register lengths up to 24. The formalism for maximum-length LFSRs was developed by [[Solomon W. Golomb]] in his 1967 book.<ref>{{cite book |last1=Golomb |first1=Solomon W. |title=Shift register sequences |date=1967 |publisher=Aegean Park Press |location=Laguna Hills, Calif. |isbn=978-0894120480}}</ref> The number of different [[Primitive polynomial (field theory)|primitive polynomials]] grows exponentially with shift-register length and can be calculated exactly using [[Euler's totient function]]<ref>{{Cite web|last=Weisstein|first=Eric W.|title=Primitive Polynomial|url=https://mathworld.wolfram.com/PrimitivePolynomial.html|access-date=2021-04-27|website=mathworld.wolfram.com|language=en}}</ref> {{OEIS|A011260}}. {|class="wikitable" style="text-align:right" |- !Bits (n) !Feedback polynomial !Taps !Taps ([[Hexadecimal|hex]]) !Period (<math>2^n - 1</math>) |- style="font-family:monospace;" ! 2 |<math>x^2 + x + 1</math> |11 |0x3 | 3 |- style="font-family:monospace;" ! 3 |<math>x^3 + x^2 + 1</math> |110 |0x6 | 7 |- style="font-family:monospace;" ! 4 |<math>x^4 + x^3 + 1</math> |1100 |0xC | 15 |- style="font-family:monospace;" ! 5 |<math>x^{ 5 }+x^{ 3 }+1</math> |10100 |0x14 | 31 |- style="font-family:monospace;" ! 6 |<math>x^{ 6 }+x^{ 5 }+1</math> |110000 |0x30 | 63 |- style="font-family:monospace;" ! 7 |<math>x^{ 7 }+x^{ 6 }+1</math> |1100000 |0x60 | 127 |- style="font-family:monospace;" ! 8 |<math>x^{ 8 }+x^{ 6 }+x^{ 5 }+x^{ 4 }+1</math> |10111000 |0xB8 | 255 |- style="font-family:monospace;" ! 9 |<math>x^{ 9 }+x^{ 5 }+1</math> |100010000 |0x110 | 511 |- style="font-family:monospace;" ! 10 |<math>x^{ 10 }+x^{ 7 }+1</math> |1001000000 |0x240 | 1,023 |- style="font-family:monospace;" ! 11 |<math>x^{ 11 }+x^{ 9 }+1</math> |10100000000 |0x500 | 2,047 |- style="font-family:monospace;" ! 12 |<math>x^{ 12 }+x^{ 11 }+x^{ 10 }+x^{ 4 }+1</math> |111000001000 |0xE08 | 4,095 |- style="font-family:monospace;" ! 13 |<math>x^{ 13 }+x^{ 12 }+x^{ 11 }+x^{ 8 }+1</math> |1110010000000 |0x1C80 | 8,191 |- style="font-family:monospace;" ! 14 |<math>x^{ 14 }+x^{ 13 }+x^{ 12 }+x^{ 2 }+1</math> |11100000000010 |0x3802 | 16,383 |- style="font-family:monospace;" ! 15 |<math>x^{ 15 }+x^{ 14 }+1</math> |110000000000000 |0x6000 | 32,767 |- style="font-family:monospace;" ! 16 |<math>x^{ 16 }+x^{ 15 }+x^{ 13 }+x^{ 4 }+1</math> |1101000000001000 |0xD008 | 65,535 |- style="font-family:monospace;" ! 17 |<math>x^{ 17 }+x^{ 14 }+1</math> |10010000000000000 |0x12000 | 131,071 |- style="font-family:monospace;" ! 18 |<math>x^{ 18 }+x^{ 11 }+1</math> |100000010000000000 |0x20400 | 262,143 |- style="font-family:monospace;" ! 19 |<math>x^{ 19 }+x^{ 18 }+x^{ 17 }+x^{ 14 }+1</math> |1110010000000000000 |0x72000 | 524,287 |- style="font-family:monospace;" ! 20 |<math>x^{ 20 }+x^{ 17 }+1</math> |10010000000000000000 |0x90000 | 1,048,575 |- style="font-family:monospace;" ! 21 |<math>x^{ 21 }+x^{ 19 }+1</math> |101000000000000000000 |0x140000 | 2,097,151 |- style="font-family:monospace;" ! 22 |<math>x^{ 22 }+x^{ 21 }+1</math> |1100000000000000000000 |0x300000 | 4,194,303 |- style="font-family:monospace;" ! 23 |<math>x^{ 23 }+x^{ 18 }+1</math> |10000100000000000000000 |0x420000 | 8,388,607 |- style="font-family:monospace;" ! 24 |<math>x^{ 24 }+x^{ 23 }+x^{ 22 }+x^{ 17 }+1</math> |111000010000000000000000 |0xE10000 | 16,777,215 |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)