Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Linear map
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Kernel, image and the rank–nullity theorem== {{Main|Kernel (linear algebra)|Image (mathematics)|Rank of a matrix}} If <math display="inline">f: V \to W</math> is linear, we define the [[kernel (linear operator)|kernel]] and the [[image (mathematics)|image]] or [[Range of a function|range]] of <math display="inline">f</math> by <math display="block">\begin{align} \ker(f) &= \{\,\mathbf x \in V: f(\mathbf x) = \mathbf 0\,\} \\ \operatorname{im}(f) &= \{\,\mathbf w \in W: \mathbf w = f(\mathbf x), \mathbf x \in V\,\} \end{align}</math> <math display="inline">\ker(f)</math> is a [[Linear subspace|subspace]] of <math display="inline">V</math> and <math display="inline">\operatorname{im}(f)</math> is a subspace of <math display="inline">W</math>. The following [[dimension]] formula is known as the [[rank–nullity theorem]]:<ref>{{harvnb|Horn|Johnson|2013|loc=0.2.3 Vector spaces associated with a matrix or linear transformation, p. 6}}</ref> <math display="block">\dim(\ker( f )) + \dim(\operatorname{im}( f )) = \dim( V ).</math> The number <math display="inline">\dim(\operatorname{im}(f))</math> is also called the [[rank of a matrix|rank]] of <math display="inline">f</math> and written as <math display="inline">\operatorname{rank}(f)</math>, or sometimes, <math display="inline">\rho(f)</math>;<ref name=":0">{{Harvard citation text|Katznelson|Katznelson|2008}} p. 52, § 2.5.1</ref><ref name=":1">{{Harvard citation text|Halmos|1974}} p. 90, § 50</ref> the number <math display="inline">\dim(\ker(f))</math> is called the [[Kernel (matrix)#Subspace properties|nullity]] of <math display="inline">f</math> and written as <math display="inline">\operatorname{null}(f)</math> or <math display="inline">\nu(f)</math>.<ref name=":0" /><ref name=":1" /> If <math display="inline">V</math> and <math display="inline">W</math> are finite-dimensional, bases have been chosen and <math display="inline">f</math> is represented by the matrix <math display="inline">A</math>, then the rank and nullity of <math display="inline">f</math> are equal to the rank and nullity of the matrix <math display="inline">A</math>, respectively.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)