Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Lp space
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==''L<sup>p</sup>'' spaces and Lebesgue integrals== An <math>L^p</math> space may be defined as a space of measurable functions for which the <math>p</math>-th power of the [[absolute value]] is [[Lebesgue integrable]], where functions which agree almost everywhere are identified. More generally, let <math>(S, \Sigma, \mu)</math> be a [[measure space]] and <math>1 \leq p \leq \infty.</math><ref group=note>The definitions of <math>\|\cdot\|_p,</math> <math>\mathcal{L}^p(S,\, \mu),</math> and <math>L^p(S,\, \mu)</math> can be extended to all <math>0 < p \leq \infty</math> (rather than just <math>1 \leq p \leq \infty</math>), but it is only when <math>1 \leq p \leq \infty</math> that <math>\|\cdot\|_p</math> is guaranteed to be a norm (although <math>\|\cdot\|_p</math> is a [[quasi-seminorm]] for all <math>0 < p \leq \infty,</math>).</ref> When <math>p \neq \infty</math>, consider the set <math>\mathcal{L}^p(S,\, \mu)</math> of all [[measurable function]]s <math>f</math> from <math>S</math> to <math>\Complex</math> or <math>\Reals</math> whose [[absolute value]] raised to the <math>p</math>-th power has a finite integral, or in symbols:{{sfn|Rudin|1987|p=65}} <math display="block">\|f\|_p ~\stackrel{\scriptscriptstyle\text{def}}{=}~ \left(\int_S |f|^p\;\mathrm{d}\mu\right)^{1/p} < \infty.</math> To define the set for <math>p = \infty,</math> recall that two functions <math>f</math> and <math>g</math> defined on <math>S</math> are said to be {{em|equal [[almost everywhere]]}}, written {{em|<math>f = g</math> a.e.}}, if the set <math>\{s \in S : f(s) \neq g(s)\}</math> is measurable and has measure zero. Similarly, a measurable function <math>f</math> (and its [[absolute value]]) is {{em|bounded}} (or {{em|dominated}}) {{em|almost everywhere}} by a real number <math>C,</math> written {{em|<math>|f| \leq C</math> a.e.}}, if the (necessarily) measurable set <math>\{s \in S : |f(s)| > C\}</math> has measure zero. The space <math>\mathcal{L}^\infty(S,\mu)</math> is the set of all measurable functions <math>f</math> that are bounded almost everywhere (by some real <math>C</math>) and <math>\|f\|_\infty</math> is defined as the [[infimum]] of these bounds: <math display="block">\|f\|_\infty ~\stackrel{\scriptscriptstyle\text{def}}{=}~ \inf \{C \in \Reals_{\geq 0} : |f(s)| \leq C \text{ for almost every } s\}.</math> When <math>\mu(S) \neq 0</math> then this is the same as the [[essential supremum]] of the absolute value of <math>f</math>:{{refn|group=note|If <math>\mu(S) = 0</math> then <math>\operatorname{esssup}|f| = -\infty.</math>}} <math display="block">\|f\|_\infty ~=~ \begin{cases}\operatorname{esssup}|f| & \text{if } \mu(S) > 0,\\ 0 & \text{if } \mu(S) = 0.\end{cases}</math> For example, if <math>f</math> is a measurable function that is equal to <math>0</math> almost everywhere<ref group=note name=Non0Value0Example>For example, if a non-empty measurable set <math>N \neq \varnothing</math> of measure <math>\mu(N) = 0</math> exists then its [[indicator function]] <math>\mathbf{1}_N</math> satisfies <math>\|\mathbf{1}_N\|_p = 0</math> although <math>\mathbf{1}_N \neq 0.</math></ref> then <math>\|f\|_p = 0</math> for every <math>p</math> and thus <math>f \in \mathcal{L}^p(S,\, \mu)</math> for all <math>p.</math> For every positive <math>p,</math> the value under <math>\|\,\cdot\,\|_p</math> of a measurable function <math>f</math> and its absolute value <math>|f| : S \to [0, \infty]</math> are always the same (that is, <math>\|f\|_p = \||f|\|_p</math> for all <math>p</math>) and so a measurable function belongs to <math>\mathcal{L}^p(S,\, \mu)</math> if and only if its absolute value does. Because of this, many formulas involving <math>p</math>-norms are stated only for non-negative real-valued functions. Consider for example the identity <math>\|f\|_p^r = \|f^r\|_{p/r},</math> which holds whenever <math>f \geq 0</math> is measurable, <math>r > 0</math> is real, and <math>0 < p \leq \infty</math> (here <math>\infty / r \;\stackrel{\scriptscriptstyle\text{def}}{=}\; \infty</math> when <math>p = \infty</math>). The non-negativity requirement <math>f \geq 0</math> can be removed by substituting <math>|f|</math> in for <math>f,</math> which gives <math>\|\,|f|\,\|_p^r = \|\,|f|^r\,\|_{p/r}.</math> Note in particular that when <math>p = r</math> is finite then the formula <math>\|f\|_p^p = \||f|^p\|_1</math> relates the <math>p</math>-norm to the <math>1</math>-norm. '''Seminormed space of <math>p</math>-th power integrable functions''' Each set of functions <math>\mathcal{L}^p(S,\, \mu)</math> forms a [[vector space]] when addition and scalar multiplication are defined pointwise.<ref group=note>Explicitly, the vector space operations are defined by: <math display="block">\begin{align} (f+g)(x) &= f(x)+g(x), \\ (s f)(x) &= s f(x) \end{align}</math> for all <math>f, g \in \mathcal{L}^p(S,\, \mu)</math> and all scalars <math>s.</math> These operations make <math>\mathcal{L}^p(S,\, \mu)</math> into a vector space because if <math>s</math> is any scalar and <math>f, g \in \mathcal{L}^p(S,\, \mu)</math> then both <math>s f</math> and <math>f + g</math> also belong to <math>\mathcal{L}^p(S,\, \mu).</math></ref> That the sum of two <math>p</math>-th power integrable functions <math>f</math> and <math>g</math> is again <math>p</math>-th power integrable follows from <math display=inline>\|f + g\|_p^p \leq 2^{p-1} \left(\|f\|_p^p + \|g\|_p^p\right),</math><ref group=proof name=UpperBoundForNormOfSum>When <math>1 \leq p < \infty,</math> the inequality <math>\|f + g\|_p^p \leq 2^{p-1} \left(\|f\|_p^p + \|g\|_p^p\right)</math> can be deduced from the fact that the function <math>F : [0, \infty) \to \Reals</math> defined by <math>F(t) = t^p</math> is [[Convex function|convex]], which by definition means that <math>F(t x + (1 - t) y) \leq t F(x) + (1 - t) F(y)</math> for all <math>0 \leq t \leq 1</math> and all <math>x, y</math> in the domain of <math>F.</math> Substituting <math>|f|, |g|,</math> and <math>\tfrac{1}{2}</math> in for <math>x, y,</math> and <math>t</math> gives <math>\left(\tfrac{1}{2}|f| + \tfrac{1}{2}|g|\right)^p \leq \tfrac{1}{2} |f|^p + \tfrac{1}{2} |g|^p,</math> which proves that <math>(|f| + |g|)^p \leq 2^{p-1} (|f|^p + |g|^p).</math> The triangle inequality <math>|f + g| \leq |f| + |g|</math> now implies <math>|f + g|^p \leq 2^{p-1} (|f|^p + |g|^p).</math> The desired inequality follows by integrating both sides. <math>\blacksquare</math></ref> although it is also a consequence of ''[[Minkowski inequality|Minkowski's inequality]]'' <math display="block">\|f + g\|_p \leq \|f\|_p + \|g\|_p</math> which establishes that <math>\|\cdot\|_p</math> satisfies the [[triangle inequality]] for <math>1 \leq p \leq \infty</math> (the triangle inequality does not hold for <math>0 < p < 1</math>). That <math>\mathcal{L}^p(S,\, \mu)</math> is closed under scalar multiplication is due to <math>\|\cdot\|_p</math> being [[Absolute homogeneity|absolutely homogeneous]], which means that <math>\|s f\|_p = |s| \|f\|_p</math> for every scalar <math>s</math> and every function <math>f.</math> [[Absolute homogeneity]], the [[triangle inequality]], and non-negativity are the defining properties of a [[seminorm]]. Thus <math>\|\cdot\|_p</math> is a seminorm and the set <math>\mathcal{L}^p(S,\, \mu)</math> of <math>p</math>-th power integrable functions together with the function <math>\|\cdot\|_p</math> defines a [[seminormed vector space]]. In general, the [[seminorm]] <math>\|\cdot\|_p</math> is not a [[Norm (mathematics)|norm]] because there might exist measurable functions <math>f</math> that satisfy <math>\|f\|_p = 0</math> but are not {{em|identically}} equal to <math>0</math><ref group=note name=Non0Value0Example /> (<math>\|\cdot\|_p</math> is a norm if and only if no such <math>f</math> exists). '''Zero sets of <math>p</math>-seminorms''' {{anchor|kernel}} If <math>f</math> is measurable and equals <math>0</math> a.e. then <math>\|f\|_p = 0</math> for all positive <math>p \leq \infty.</math> On the other hand, if <math>f</math> is a measurable function for which there exists some <math>0 < p \leq \infty</math> such that <math>\|f\|_p = 0</math> then <math>f = 0</math> almost everywhere. When <math>p</math> is finite then this follows from the <math>p = 1</math> case and the formula <math>\|f\|_p^p = \||f|^p\|_1</math> mentioned above. <!--(this formula itself follows from <math>\|f\|_p^r = \|f^r\|_{p/r},</math> which holds whenever <math>f \geq 0</math> is measurable, <math>r > 0</math> is real, and <math>0 < p \leq \infty</math> (where <math>\infty / r \;\stackrel{\scriptscriptstyle\text{def}}{=}\; \infty</math> when <math>p = \infty</math>)). --> Thus if <math>p \leq \infty</math> is positive and <math>f</math> is any measurable function, then <math>\|f\|_p = 0</math> if and only if <math>f = 0</math> [[almost everywhere]]. Since the right hand side (<math>f = 0</math> a.e.) does not mention <math>p,</math> it follows that all <math>\|\cdot\|_p</math> have the same [[zero set]] (it does not depend on <math>p</math>). So denote this common set by <math display="block">\mathcal{N} \;\stackrel{\scriptscriptstyle\text{def}}{=}\; \{f : f = 0 \ \mu\text{-almost everywhere} \} = \{f \in \mathcal{L}^p(S,\, \mu) : \|f\|_p = 0\} \qquad \forall \ p.</math> This set is a vector subspace of <math>\mathcal{L}^p(S,\, \mu)</math> for every positive <math>p \leq \infty.</math> '''Quotient vector space''' Like every [[seminorm]], the seminorm <math>\|\cdot\|_p</math> induces a [[Norm (mathematics)|norm]] (defined shortly) on the canonical [[Quotient space (linear algebra)|quotient vector space]] of <math>\mathcal{L}^p(S,\, \mu)</math> by its vector subspace <math display="inline">\mathcal{N} = \{f \in \mathcal{L}^p(S,\, \mu) : \|f\|_p = 0\}.</math> This normed quotient space is called {{em|Lebesgue space}} and it is the subject of this article. We begin by defining the quotient vector space. Given any <math>f \in \mathcal{L}^p(S,\, \mu),</math> the [[coset]] <math>f + \mathcal{N} \;\stackrel{\scriptscriptstyle\text{def}}{=}\; \{f + h : h \in \mathcal{N}\}</math> consists of all measurable functions <math>g</math> that are equal to <math>f</math> [[almost everywhere]]. The set of all cosets, typically denoted by <math display="block">\mathcal{L}^p(S, \mu) / \mathcal{N} ~~\stackrel{\scriptscriptstyle\text{def}}{=}~~ \{f + \mathcal{N} : f \in \mathcal{L}^p(S, \mu)\},</math> forms a vector space with origin <math>0 + \mathcal{N} = \mathcal{N}</math> when vector addition and scalar multiplication are defined by <math>(f + \mathcal{N}) + (g + \mathcal{N}) \;\stackrel{\scriptscriptstyle\text{def}}{=}\; (f + g) + \mathcal{N}</math> and <math>s (f + \mathcal{N}) \;\stackrel{\scriptscriptstyle\text{def}}{=}\; (s f) + \mathcal{N}.</math> This particular quotient vector space will be denoted by <math display="block">L^p(S,\, \mu) ~\stackrel{\scriptscriptstyle\text{def}}{=}~ \mathcal{L}^p(S, \mu) / \mathcal{N}.</math> Two cosets are equal <math>f + \mathcal{N} = g + \mathcal{N}</math> if and only if <math>g \in f + \mathcal{N}</math> (or equivalently, <math>f - g \in \mathcal{N}</math>), which happens if and only if <math>f = g</math> almost everywhere; if this is the case then <math>f</math> and <math>g</math> are identified in the quotient space. Hence, strictly speaking <math>L^p(S,\, \mu) </math> consists of [[equivalence class]]es of functions.{{sfn|Stein|Shakarchi|2012|p=2}} '''The <math>p</math>-norm on the quotient vector space''' Given any <math>f \in \mathcal{L}^p(S,\, \mu),</math> the value of the seminorm <math>\|\cdot\|_p</math> on the [[coset]] <math>f + \mathcal{N} = \{f + h : h \in \mathcal{N}\}</math> is constant and equal to <math>\|f\|_p;</math> denote this unique value by <math>\|f + \mathcal{N}\|_p,</math> so that: <math display=block>\|f + \mathcal{N}\|_p \;\stackrel{\scriptscriptstyle\text{def}}{=}\; \|f\|_p.</math> This assignment <math>f + \mathcal{N} \mapsto \|f + \mathcal{N}\|_p</math> defines a map, which will also be denoted by <math>\|\cdot\|_p,</math> on the [[Quotient space (linear algebra)|quotient vector space]] <math display="block">L^p(S, \mu) ~~\stackrel{\scriptscriptstyle\text{def}}{=}~~ \mathcal{L}^p(S, \mu) / \mathcal{N} ~=~ \{f + \mathcal{N} : f \in \mathcal{L}^p(S, \mu)\}.</math> This map is a [[Norm (mathematics)|norm]] on <math>L^p(S, \mu)</math> called the {{em|{{visible anchor|p-norm|text=<math>p</math>-norm}}}}. The value <math>\|f + \mathcal{N}\|_p</math> of a coset <math>f + \mathcal{N}</math> is independent of the particular function <math>f</math> that was chosen to represent the coset, meaning that if <math>\mathcal{C} \in L^p(S, \mu)</math> is any coset then <math>\|\mathcal{C}\|_p = \|f\|_p</math> for every <math>f \in \mathcal{C}</math> (since <math>\mathcal{C} = f + \mathcal{N}</math> for every <math>f \in \mathcal{C}</math>). '''The Lebesgue <math>L^p</math> space''' The [[normed vector space]] <math>\left(L^p(S, \mu), \|\cdot\|_p\right)</math> is called {{em|<math>L^p</math> space}} or the {{em|Lebesgue space}} of <math>p</math>-th power integrable functions and it is a [[Banach space]] for every <math>1 \leq p \leq \infty</math> (meaning that it is a [[complete metric space]], a result that is sometimes called the [[Riesz–Fischer theorem#Completeness of Lp, 0 < p ≤ ∞|Riesz–Fischer theorem]]). When the underlying measure space <math>S</math> is understood then <math>L^p(S, \mu)</math> is often abbreviated <math>L^p(\mu),</math> or even just <math>L^p.</math> Depending on the author, the subscript notation <math>L_p</math> might denote either <math>L^p(S, \mu)</math> or <math>L^{1/p}(S, \mu).</math> If the seminorm <math>\|\cdot\|_p</math> on <math>\mathcal{L}^p(S,\, \mu)</math> happens to be a norm (which happens if and only if <math>\mathcal{N} = \{0\}</math>) then the normed space <math>\left(\mathcal{L}^p(S,\, \mu), \|\cdot\|_p\right)</math> will be [[Linear map|linearly]] [[isometrically isomorphic]] to the normed quotient space <math>\left(L^p(S, \mu), \|\cdot\|_p\right)</math> via the canonical map <math>g \in \mathcal{L}^p(S,\, \mu) \mapsto \{g\}</math> (since <math>g + \mathcal{N} = \{g\}</math>); in other words, they will be, [[up to]] a [[linear isometry]], the same normed space and so they may both be called "<math>L^p</math> space". The above definitions generalize to [[Bochner space]]s. In general, this process cannot be reversed: there is no consistent way to define a "canonical" representative of each coset of <math>\mathcal{N}</math> in <math>L^p.</math> For <math>L^\infty,</math> however, there is a [[Lifting theory|theory of lifts]] enabling such recovery. ===Special cases=== For <math>1 \leq p \leq \infty</math> the <math>\ell^p</math> spaces are a special case of <math>L^p</math> spaces; when <math>S</math> are the [[natural number]]s <math>\mathbb{N}</math> and <math>\mu</math> is the [[counting measure]]. More generally, if one considers any set <math>S</math> with the counting measure, the resulting <math>L^p</math> space is denoted <math>\ell^p(S).</math> For example, <math>\ell^p(\mathbb{Z})</math> is the space of all sequences indexed by the integers, and when defining the <math>p</math>-norm on such a space, one sums over all the integers. The space <math>\ell^p(n),</math> where <math>n</math> is the set with <math>n</math> elements, is <math>\Reals^n</math> with its <math>p</math>-norm as defined above. Similar to <math>\ell^2</math> spaces, <math>L^2</math> is the only [[Hilbert space]] among <math>L^p</math> spaces. In the complex case, the inner product on <math>L^2</math> is defined by <math display="block">\langle f, g \rangle = \int_S f(x) \overline{g(x)} \, \mathrm{d}\mu(x).</math> Functions in <math>L^2</math> are sometimes called '''[[square-integrable function]]s''', '''quadratically integrable functions''' or '''square-summable functions''', but sometimes these terms are reserved for functions that are square-integrable in some other sense, such as in the sense of a [[Riemann integral]] {{harv|Titchmarsh|1976}}. As any Hilbert space, every space <math>L^2</math> is linearly isometric to a suitable <math>\ell^2(I),</math> where the cardinality of the set <math>I</math> is the cardinality of an arbitrary basis for this particular <math>L^2.</math> If we use complex-valued functions, the space <math>L^\infty</math> is a [[commutative]] [[C*-algebra]] with pointwise multiplication and conjugation. For many measure spaces, including all sigma-finite ones, it is in fact a commutative [[von Neumann algebra]]. An element of <math>L^\infty</math> defines a [[bounded operator]] on any <math>L^p</math> space by [[multiplication operator|multiplication]]. ===When {{math|(0 < ''p'' < 1)}}=== If <math>0 < p < 1,</math> then <math>L^p(\mu)</math> can be defined as above, that is: <math display="block">N_p(f) = \int_S |f|^p\, d\mu < \infty.</math> In this case, however, the <math>p</math>-norm <math>\|f\|_p = N_p(f)^{1/p}</math> does not satisfy the triangle inequality and defines only a [[quasi-norm]]. The inequality <math>(a + b)^p \leq a^p + b^p,</math> valid for <math>a, b \geq 0,</math> implies that <math display="block">N_p(f + g) \leq N_p(f) + N_p(g)</math> and so the function <math display="block">d_p(f ,g) = N_p(f - g) = \|f - g\|_p^p</math> is a metric on <math>L^p(\mu).</math> The resulting metric space is [[Complete metric space|complete]].{{sfn|Rudin|1991|p=37}} In this setting <math>L^p</math> satisfies a ''reverse Minkowski inequality'', that is for <math>u, v \in L^p</math> <math display="block">\Big\||u| + |v|\Big\|_p \geq \|u\|_p + \|v\|_p</math> This result may be used to prove [[Clarkson's inequalities]], which are in turn used to establish the [[uniformly convex space|uniform convexity]] of the spaces <math>L^p</math> for <math>1 < p < \infty</math> {{harv|Adams|Fournier|2003}}. The space <math>L^p</math> for <math>0 < p < 1</math> is an [[F-space]]: it admits a complete translation-invariant metric with respect to which the vector space operations are continuous. It is the prototypical example of an [[F-space]] that, for most reasonable measure spaces, is not [[Locally convex topological vector space|locally convex]]: in <math>\ell^p</math> or <math>L^p([0, 1]),</math> every open convex set containing the <math>0</math> function is unbounded for the <math>p</math>-quasi-norm; therefore, the <math>0</math> vector does not possess a fundamental system of convex neighborhoods. Specifically, this is true if the measure space <math>S</math> contains an infinite family of disjoint measurable sets of finite positive measure. The only nonempty convex open set in <math>L^p([0, 1])</math> is the entire space. Consequently, there are no nonzero continuous linear functionals on <math>L^p([0, 1]);</math> the [[continuous dual space]] is the zero space. In the case of the [[counting measure]] on the natural numbers (i.e. <math>L^p(\mu) = \ell^p</math>), the bounded linear functionals on <math>\ell^p</math> are exactly those that are bounded on <math>\ell^1</math>, i.e., those given by sequences in <math>\ell^\infty.</math> Although <math>\ell^p</math> does contain non-trivial convex open sets, it fails to have enough of them to give a base for the topology. Having no linear functionals is highly undesirable for the purposes of doing analysis. In case of the Lebesgue measure on <math>\Reals^n,</math> rather than work with <math>L^p</math> for <math>0 < p < 1,</math> it is common to work with the [[Hardy space]] {{math|''H{{i sup|p}}''}} whenever possible, as this has quite a few linear functionals: enough to distinguish points from one another. However, the [[Hahn–Banach theorem]] still fails in {{math|''H{{i sup|p}}''}} for <math>p < 1</math> {{harv|Duren|1970|loc=§7.5}}.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)