Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Mayer–Vietoris sequence
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===''k''-sphere=== [[Image:SphereCoverStriped.png|thumb|250px|right|The decomposition for ''X'' = ''S''<sup>2</sup>]] To completely compute the homology of the [[n-sphere|''k''-sphere]] ''X'' = ''S''<sup>''k''</sup>, let ''A'' and ''B'' be two hemispheres of ''X'' with intersection [[homotopy equivalent]] to a (''k'' − 1)-dimensional equatorial sphere. Since the ''k''-dimensional hemispheres are [[homeomorphic]] to ''k''-discs, which are [[contractible]], the homology groups for ''A'' and ''B'' are [[Trivial group|trivial]]. The Mayer–Vietoris sequence for [[reduced homology]] groups then yields :<math> \cdots \longrightarrow 0 \longrightarrow \tilde{H}_{n}\!\left(S^k\right)\, \xrightarrow{\overset{}{\partial_*}}\,\tilde{H}_{n-1}\!\left(S^{k-1}\right) \longrightarrow 0 \longrightarrow \cdots </math> Exactness immediately implies that the map ∂<sub>*</sub> is an isomorphism. Using the [[reduced homology]] of the [[0-sphere]] (two points) as a [[Mathematical induction|base case]], it follows<ref>{{harvnb|Hatcher|2002|loc=Example 2.46, p. 150}}</ref> :<math>\tilde{H}_n\!\left(S^k\right)\cong\delta_{kn}\,\mathbb{Z}= \begin{cases} \mathbb{Z} & \mbox{if } n=k, \\ 0 & \mbox{if } n \ne k, \end{cases}</math> where δ is the [[Kronecker delta]]. Such a complete understanding of the homology groups for spheres is in stark contrast with current knowledge of [[homotopy groups of spheres]], especially for the case ''n'' > ''k'' about which little is known.<ref>{{harvnb|Hatcher|2002|p=384}}</ref> {{-}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)