Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Metaheuristic
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Applications == Most metaheuristics are search methods and when using them, the evaluation function should be subject to greater demands than a mathematical optimization. Not only does the desired target state have to be formulated, but the evaluation should also reward improvements to a solution on the way to the target in order to support and accelerate the search process. The [[Fitness function|fitness functions]] of evolutionary or memetic algorithms can serve as an example. Metaheuristics are used for all types of optimization problems, ranging from [[Continuous optimization|continuous]] through mixed integer problems to [[combinatorial optimization]] or combinations thereof.<ref name=":5" /><ref>{{Cite book |url=https://link.springer.com/book/10.1007/11890584 |title=Hybrid Metaheuristics |date=2006 |publisher=Springer |isbn=978-3-540-46384-9 |editor-last=Almeida |editor-first=Francisco |series=Lecture Notes in Computer Science |volume=4030 |location=Berlin, Heidelberg |doi=10.1007/11890584 |editor-last2=Blesa Aguilera |editor-first2=María J. |editor-last3=Blum |editor-first3=Christian |editor-last4=Moreno Vega |editor-first4=José Marcos |editor-last5=Pérez Pérez |editor-first5=Melquíades |editor-last6=Roli |editor-first6=Andrea |editor-last7=Sampels |editor-first7=Michael}}</ref><ref>{{Cite book |url=http://link.springer.com/10.1007/978-3-642-23247-3 |title=Handbook of Memetic Algorithms |date=2012 |publisher=Springer Berlin Heidelberg |isbn=978-3-642-23246-6 |editor-last=Neri |editor-first=Ferrante |series=Studies in Computational Intelligence |volume=379 |location=Berlin, Heidelberg |language=en |doi=10.1007/978-3-642-23247-3 |editor-last2=Cotta |editor-first2=Carlos |editor-last3=Moscato |editor-first3=Pablo}}</ref> In combinatorial optimization, an optimal solution is sought over a [[discrete mathematics|discrete]] search-space. An example problem is the [[travelling salesman problem]] where the search-space of candidate solutions grows faster than [[exponential growth|exponentially]] as the size of the problem increases, which makes an [[exhaustive search]] for the optimal solution infeasible.<ref>{{Cite journal |last1=Dorigo |first1=M. |last2=Gambardella |first2=L.M. |date=April 1997 |title=Ant colony system: a cooperative learning approach to the traveling salesman problem |url=https://ieeexplore.ieee.org/document/585892 |journal=IEEE Transactions on Evolutionary Computation |volume=1 |issue=1 |pages=53–66 |doi=10.1109/4235.585892}}</ref><ref>{{Cite journal |last1=Merz |first1=Peter |last2=Freisleben |first2=Bernd |date=2002 |title=Memetic Algorithms for the Traveling Salesman Problem |url=https://www.researchgate.net/publication/2928026 |journal=Complex Systems |volume=13 |issue=4}}</ref> Additionally, multidimensional combinatorial problems, including most design problems in [[engineering]]<ref name=":2" /><ref>Tomoiagă B, Chindriş M, Sumper A, Sudria-Andreu A, Villafafila-Robles R. [http://www.mdpi.com/1996-1073/6/3/1439/pdf Pareto Optimal Reconfiguration of Power Distribution Systems Using a Genetic Algorithm Based on NSGA-II. ] Energies. 2013; 6(3):1439–1455.</ref><ref>{{Cite journal|title = Swarm intelligence and gravitational search algorithm for multi-objective optimization of synthesis gas production|journal = Applied Energy|date = 2013-03-01|pages = 368–374|volume = 103|doi= 10.1016/j.apenergy.2012.09.059|first1 = T.|last1 = Ganesan|first2 = I.|last2 = Elamvazuthi|first3 = Ku Zilati|last3 = Ku Shaari|first4 = P.|last4 = Vasant| bibcode=2013ApEn..103..368G }}</ref><ref>{{Cite book|date = 2011-11-01|pages = 86–91|doi = 10.1109/ICCSCE.2011.6190501|first1 = T.|last1 = Ganesan|first2 = I.|last2 = Elamvazuthi|first3 = P.|last3 = Vasant| title=2011 IEEE International Conference on Control System, Computing and Engineering | chapter=Evolutionary normal-boundary intersection (ENBI) method for multi-objective optimization of green sand mould system |isbn = 978-1-4577-1642-3|s2cid = 698459}}</ref> such as form-finding and behavior-finding, suffer from the [[curse of dimensionality]], which also makes them infeasible for exhaustive search or [[Analytical solution|analytical method]]s. Metaheuristics are also frequently applied to scheduling problems. A typical representative of this combinatorial task class is job shop scheduling, which involves assigning the work steps of jobs to processing stations in such a way that all jobs are completed on time and altogether in the shortest possible time.<ref name=":1">{{Cite book |url=https://www.wiley.com/en-dk/Metaheuristics+for+Production+Scheduling-p-9781848214972 |title=Metaheuristics for production scheduling |date=2013 |publisher=ISTE |isbn=978-1-84821-497-2 |editor-last=Jarboui |editor-first=Bassem |series=Automation - control and industrial engineering series |location=London |editor-last2=Siarry |editor-first2=Patrick |editor-last3=Teghem |editor-first3=Jacques}}</ref><ref>{{Cite book |url=http://link.springer.com/10.1007/978-3-540-78985-7 |title=Metaheuristics for Scheduling in Industrial and Manufacturing Applications |date=2008 |publisher=Springer Berlin Heidelberg |isbn=978-3-540-78984-0 |editor-last=Xhafa |editor-first=Fatos |series=Studies in Computational Intelligence |volume=128 |location=Berlin, Heidelberg |language=en |doi=10.1007/978-3-540-78985-7 |s2cid=42238720 |editor-last2=Abraham |editor-first2=Ajith}}</ref> In practice, restrictions often have to be observed, e.g. by limiting the permissible sequence of work steps of a job through predefined workflows<ref>{{Cite journal |last1=Jakob |first1=Wilfried |last2=Strack |first2=Sylvia |last3=Quinte |first3=Alexander |last4=Bengel |first4=Günther |last5=Stucky |first5=Karl-Uwe |last6=Süß |first6=Wolfgang |date=2013-04-22 |title=Fast Rescheduling of Multiple Workflows to Constrained Heterogeneous Resources Using Multi-Criteria Memetic Computing |journal=Algorithms |language=en |volume=6 |issue=2 |pages=245–277 |doi=10.3390/a6020245 |issn=1999-4893 |doi-access=free }}</ref> and/or with regard to resource utilisation, e.g. in the form of smoothing the energy demand.<ref>{{Cite journal |last1=Kizilay |first1=Damla |last2=Tasgetiren |first2=M. Fatih |last3=Pan |first3=Quan-Ke |last4=Süer |first4=Gürsel |date=2019 |title=An Ensemble of Meta-Heuristics for the Energy-Efficient Blocking Flowshop Scheduling Problem |journal=Procedia Manufacturing |language=en |volume=39 |pages=1177–1184 |doi=10.1016/j.promfg.2020.01.352|s2cid=213710393 |doi-access=free }}</ref><ref>{{Cite journal |last1=Grosch |first1=Benedikt |last2=Weitzel |first2=Timm |last3=Panten |first3=Niklas |last4=Abele |first4=Eberhard |date=2019 |title=A metaheuristic for energy adaptive production scheduling with multiple energy carriers and its implementation in a real production system |journal=Procedia CIRP |language=en |volume=80 |pages=203–208 |doi=10.1016/j.procir.2019.01.043|s2cid=164850023 |doi-access=free }}</ref> Popular metaheuristics for combinatorial problems include [[genetic algorithms]] by Holland et al.,<ref name="holland75adaptation" /> scatter search<ref name="glover77scattersearch" /> and [[tabu search]]<ref name="glover86future" /> by Glover. Another large field of application are optimization tasks in continuous or mixed-integer search spaces. This includes, e.g., design optimization<ref name=":2">{{Cite journal |last1=Gupta |first1=Shubham |last2=Abderazek |first2=Hammoudi |last3=Yıldız |first3=Betül Sultan |last4=Yildiz |first4=Ali Riza |last5=Mirjalili |first5=Seyedali |last6=Sait |first6=Sadiq M. |date=2021 |title=Comparison of metaheuristic optimization algorithms for solving constrained mechanical design optimization problems |url=https://linkinghub.elsevier.com/retrieve/pii/S095741742100779X |journal=Expert Systems with Applications |language=en |volume=183 |pages=115351 |doi=10.1016/j.eswa.2021.115351}}</ref><ref>{{Citation |last1=Quinte |first1=Alexander |title=Optimization of a Micro Actuator Plate Using Evolutionary Algorithms and Simulation Based on Discrete Element Methods |date=2002 |work=International Conference on Modeling and Simulation of Microsystems: MSM 2002 |pages=192–197 |editor-last=Laudon |editor-first=Matthew |location=Cambridge, Mass |publisher=Computational Publications |isbn=978-0-9708275-7-9 |last2=Jakob |first2=Wilfried |last3=Scherer |first3=Klaus-Peter |last4=Eggert |first4=Horst |url=https://www.researchgate.net/publication/228790476}}</ref><ref>{{Citation |last=Parmee |first=I. C. |title=Strategies for the Integration of Evolutionary/Adaptive Search with the Engineering Design Process |date=1997 |url=http://link.springer.com/10.1007/978-3-662-03423-1_25 |work=Evolutionary Algorithms in Engineering Applications |pages=453–477 |editor-last=Dasgupta |editor-first=Dipankar |access-date=2023-07-17 |place=Berlin, Heidelberg |publisher=Springer |language=en |doi=10.1007/978-3-662-03423-1_25 |isbn=978-3-642-08282-5 |editor2-last=Michalewicz |editor2-first=Zbigniew}}</ref> or various engineering tasks.<ref>{{Cite book |url=https://link.springer.com/10.1007/978-3-319-06508-3 |title=Applications of Metaheuristics in Process Engineering |date=2014 |publisher=Springer International Publishing |isbn=978-3-319-06507-6 |editor-last=Valadi |editor-first=Jayaraman |location=Cham |language=en |doi=10.1007/978-3-319-06508-3 |s2cid=40197553 |editor-last2=Siarry |editor-first2=Patrick}}</ref><ref>{{Cite book |last1=Sanchez |first1=Ernesto |url=http://link.springer.com/10.1007/978-3-642-27467-1 |title=Industrial Applications of Evolutionary Algorithms |last2=Squillero |first2=Giovanni |last3=Tonda |first3=Alberto |date=2012 |publisher=Springer |isbn=978-3-642-27466-4 |series=Intelligent Systems Reference Library |volume=34 |location=Berlin, Heidelberg |language=en |doi=10.1007/978-3-642-27467-1}}</ref><ref>{{Cite book |url=https://link.springer.com/10.1007/978-3-031-16832-1 |title=Engineering Applications of Modern Metaheuristics |date=2023 |publisher=Springer International Publishing |isbn=978-3-031-16831-4 |editor-last=Akan |editor-first=Taymaz |series=Studies in Computational Intelligence |volume=1069 |location=Cham |language=en |doi=10.1007/978-3-031-16832-1 |s2cid=254222401 |editor-last2=Anter |editor-first2=Ahmed M. |editor-last3=Etaner-Uyar |editor-first3=A. Şima |editor-last4=Oliva |editor-first4=Diego}}</ref> An example of the mixture of combinatorial and continuous optimization is the planning of favourable motion paths for industrial robots.<ref>{{Citation |last=Blume |first=Christian |title=Optimized Collision Free Robot Move Statement Generation by the Evolutionary Software GLEAM |date=2000 |url=http://link.springer.com/10.1007/3-540-45561-2_32 |work=Real-World Applications of Evolutionary Computing |series=Lecture Notes in Computer Science |volume=1803 |pages=330–341 |editor-last=Cagnoni |editor-first=Stefano |access-date=2023-07-17 |place=Berlin, Heidelberg |publisher=Springer |language=en |doi=10.1007/3-540-45561-2_32 |isbn=978-3-540-67353-8}}</ref><ref>{{Citation |last1=Pholdee |first1=Nantiwat |title=Multiobjective Trajectory Planning of a 6D Robot based on Multiobjective Meta Heuristic Search |date=2018-12-14 |url=https://dl.acm.org/doi/10.1145/3301326.3301356 |work=International Conference on Network, Communication and Computing (ICNCC 2018) |pages=352–356 |publisher=ACM |language=en |doi=10.1145/3301326.3301356 |isbn=978-1-4503-6553-6 |last2=Bureerat |first2=Sujin|s2cid=77394395 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)