Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Metric tensor
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Components of the metric== {{Hatnote|This section assumes some familiarity with [[coordinate vector]]s.}} The components of the metric in any [[basis of a vector space|basis]] of [[vector field]]s, or [[frame bundle|frame]], {{math|'''f''' {{=}} (''X''<sub>1</sub>, ..., ''X''<sub>''n''</sub>)}} are given by<ref>The notation of using square brackets to denote the basis in terms of which the components are calculated is not universal. The notation employed here is modeled on that of {{harvtxt|Wells|1980}}. Typically, such explicit dependence on the basis is entirely suppressed.</ref> {{NumBlk|:|<math>g_{ij}[\mathbf{f}] = g\left(X_i, X_j\right).</math>|{{EquationRef|4}}}} The {{math|''n''<sup>2</sup>}} functions {{math|''g''<sub>''ij''</sub>['''f''']}} form the entries of an {{math|''n'' × ''n''}} [[symmetric matrix]], {{math|''G''['''f''']}}. If :<math>v = \sum_{i=1}^n v^iX_i \,, \quad w = \sum_{i=1}^n w^iX_i</math> are two vectors at {{math|''p'' ∈ ''U''}}, then the value of the metric applied to {{mvar|v}} and {{mvar|w}} is determined by the coefficients ({{EquationNote|4}}) by bilinearity: :<math>g(v, w) = \sum_{i,j=1}^n v^iw^jg\left(X_i,X_j\right) = \sum_{i,j=1}^n v^iw^jg_{ij}[\mathbf{f}]</math> Denoting the [[matrix (mathematics)|matrix]] {{math|(''g''<sub>''ij''</sub>['''f'''])}} by {{math|''G''['''f''']}} and arranging the components of the vectors {{mvar|v}} and {{mvar|w}} into [[column vector]]s {{math|'''v'''['''f''']}} and {{math|'''w'''['''f''']}}, :<math>g(v,w) = \mathbf{v}[\mathbf{f}]^\mathsf{T} G[\mathbf{f}] \mathbf{w}[\mathbf{f}] = \mathbf{w}[\mathbf{f}]^\mathsf{T} G[\mathbf{f}]\mathbf{v}[\mathbf{f}]</math> where {{math|'''v'''['''f''']}}<sup>T</sup> and {{math|'''w'''['''f''']}}<sup>T</sup> denote the [[matrix transpose|transpose]] of the vectors {{math|'''v'''['''f''']}} and {{math|'''w'''['''f''']}}, respectively. Under a [[change of basis]] of the form :<math>\mathbf{f}\mapsto \mathbf{f}' = \left(\sum_k X_ka_{k1},\dots,\sum_k X_ka_{kn}\right) = \mathbf{f}A</math> for some [[invertible matrix|invertible]] {{math|''n'' × ''n''}} matrix {{math|''A'' {{=}} (''a''<sub>''ij''</sub>)}}, the matrix of components of the metric changes by {{mvar|A}} as well. That is, :<math>G[\mathbf{f}A] = A^\mathsf{T} G[\mathbf{f}]A</math> or, in terms of the entries of this matrix, :<math>g_{ij}[\mathbf{f}A] = \sum_{k,l=1}^n a_{ki}g_{kl}[\mathbf{f}]a_{lj} \, .</math> For this reason, the system of quantities {{math|''g''<sub>''ij''</sub>['''f''']}} is said to transform covariantly with respect to changes in the frame {{math|'''f'''}}. ===Metric in coordinates=== A system of {{mvar|n}} real-valued functions {{math|(''x''<sup>1</sup>, ..., ''x''<sup>''n''</sup>)}}, giving a local [[coordinates|coordinate system]] on an [[open set]] {{mvar|U}} in {{mvar|M}}, determines a basis of vector fields on {{mvar|U}} :<math>\mathbf{f} = \left(X_1 = \frac{\partial}{\partial x^1}, \dots, X_n = \frac{\partial}{\partial x^n}\right) \,.</math> The metric {{mvar|g}} has components relative to this frame given by :<math>g_{ij}\left[\mathbf{f}\right] = g\left(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j}\right) \,.</math> Relative to a new system of local coordinates, say :<math>y^i = y^i(x^1, x^2, \dots, x^n),\quad i=1,2,\dots,n</math> the metric tensor will determine a different matrix of coefficients, :<math>g_{ij}\left[\mathbf{f}'\right] = g\left(\frac{\partial}{\partial y^i}, \frac{\partial}{\partial y^j}\right).</math> This new system of functions is related to the original {{math|''g''<sub>''ij''</sub>('''f''')}} by means of the [[chain rule]] :<math>\frac{\partial}{\partial y^i} = \sum_{k=1}^n \frac{\partial x^k}{\partial y^i}\frac{\partial}{\partial x^k}</math> so that :<math>g_{ij}\left[\mathbf{f}'\right] = \sum_{k,l=1}^n \frac{\partial x^k}{\partial y^i} g_{kl}\left[\mathbf{f}\right]\frac{\partial x^l}{\partial y^j}.</math> Or, in terms of the matrices {{math|''G''['''f'''] {{=}} (''g''<sub>''ij''</sub>['''f'''])}} and {{math|''G''['''f'''′] {{=}} (''g''<sub>''ij''</sub>['''f'''′])}}, :<math>G\left[\mathbf{f}'\right] = \left((Dy)^{-1}\right)^\mathsf{T} G\left[\mathbf{f}\right] (Dy)^{-1}</math> where {{mvar|Dy}} denotes the [[Jacobian matrix]] of the coordinate change. ===Signature of a metric=== {{main|Metric signature}} Associated to any metric tensor is the [[quadratic form]] defined in each tangent space by :<math>q_m(X_m) = g_m(X_m,X_m) \,, \quad X_m\in T_mM.</math> If {{math|''q''<sub>''m''</sub>}} is positive for all non-zero {{math|''X''<sub>''m''</sub>}}, then the metric is [[definite bilinear form|positive-definite]] at {{mvar|m}}. If the metric is positive-definite at every {{math|''m'' ∈ ''M''}}, then {{mvar|g}} is called a [[Riemannian metric]]. More generally, if the quadratic forms {{math|''q''<sub>''m''</sub>}} have constant [[signature of a quadratic form|signature]] independent of {{mvar|m}}, then the signature of {{mvar|g}} is this signature, and {{mvar|g}} is called a [[pseudo-Riemannian metric]].<ref>{{harvnb|Dodson|Poston|1991|loc=Chapter VII §3.04}}</ref> If {{mvar|M}} is [[connected space|connected]], then the signature of {{mvar|q<sub>m</sub>}} does not depend on {{mvar|m}}.<ref>{{harvnb|Vaughn|2007|loc=§3.4.3}}</ref> By [[Sylvester's law of inertia]], a basis of tangent vectors {{math|''X''<sub>''i''</sub>}} can be chosen locally so that the quadratic form diagonalizes in the following manner :<math>q_m\left(\sum_i\xi^iX_i\right) = \left(\xi^1\right)^2+\left(\xi^2\right)^2+\cdots+\left(\xi^p\right)^2 - \left(\xi^{p+1}\right)^2-\cdots-\left(\xi^n\right)^2</math> for some {{mvar|p}} between 1 and {{mvar|n}}. Any two such expressions of {{mvar|q}} (at the same point {{mvar|m}} of {{mvar|M}}) will have the same number {{mvar|p}} of positive signs. The signature of {{mvar|g}} is the pair of integers {{math|(''p'', ''n'' − ''p'')}}, signifying that there are {{mvar|p}} positive signs and {{math|''n'' − ''p''}} negative signs in any such expression. Equivalently, the metric has signature {{math|(''p'', ''n'' − ''p'')}} if the matrix {{math|''g''<sub>''ij''</sub>}} of the metric has {{mvar|p}} positive and {{math|''n'' − ''p''}} negative [[eigenvalue]]s. Certain metric signatures which arise frequently in applications are: * If {{mvar|g}} has signature {{math|(''n'', 0)}}, then {{mvar|g}} is a Riemannian metric, and {{mvar|M}} is called a [[Riemannian manifold]]. Otherwise, {{mvar|g}} is a pseudo-Riemannian metric, and {{mvar|M}} is called a [[pseudo-Riemannian manifold]] (the term semi-Riemannian is also used). * If {{mvar|M}} is four-dimensional with signature {{math|(1, 3)}} or {{math|(3, 1)}}, then the metric is called [[Lorentzian metric|Lorentzian]]. More generally, a metric tensor in dimension {{mvar|n}} other than 4 of signature {{math|(1, ''n'' − 1)}} or {{math|(''n'' − 1, 1)}} is sometimes also called Lorentzian. * If {{mvar|M}} is {{math|2''n''}}-dimensional and {{mvar|g}} has signature {{math|(''n'', ''n'')}}, then the metric is called [[ultrahyperbolic metric|ultrahyperbolic]]. ===Inverse metric=== Let {{math|'''f''' {{=}} (''X''<sub>1</sub>, ..., ''X''<sub>''n''</sub>)}} be a basis of vector fields, and as above let {{math|''G''['''f''']}} be the matrix of coefficients :<math>g_{ij}[\mathbf{f}] = g\left(X_i,X_j\right) \,.</math> One can consider the [[inverse matrix]] {{math|''G''['''f''']<sup>−1</sup>}}, which is identified with the '''inverse metric''' (or ''conjugate'' or ''dual metric''). The inverse metric satisfies a transformation law when the frame {{math|'''f'''}} is changed by a matrix {{mvar|A}} via {{NumBlk|:|<math>G[\mathbf{f}A]^{-1} = A^{-1}G[\mathbf{f}]^{-1}\left(A^{-1}\right)^\mathsf{T}.</math>|{{EquationRef|5}}}} The inverse metric transforms ''[[Covariance and contravariance of vectors|contravariantly]]'', or with respect to the inverse of the change of basis matrix {{mvar|A}}. Whereas the metric itself provides a way to measure the length of (or angle between) vector fields, the inverse metric supplies a means of measuring the length of (or angle between) [[covector]] fields; that is, fields of [[linear functional]]s. To see this, suppose that {{mvar|α}} is a covector field. To wit, for each point {{mvar|p}}, {{mvar|α}} determines a function {{math|''α''<sub>''p''</sub>}} defined on tangent vectors at {{mvar|p}} so that the following [[linear transformation|linearity]] condition holds for all tangent vectors {{math|''X''<sub>''p''</sub>}} and {{math|''Y''<sub>''p''</sub>}}, and all real numbers {{mvar|a}} and {{mvar|b}}: :<math>\alpha_p \left(aX_p + bY_p\right) = a\alpha_p \left(X_p\right) + b\alpha_p \left(Y_p\right)\,.</math> As {{mvar|p}} varies, {{mvar|α}} is assumed to be a [[smooth function]] in the sense that :<math>p \mapsto \alpha_p \left(X_p\right)</math> is a smooth function of {{mvar|p}} for any smooth vector field {{mvar|X}}. Any covector field {{mvar|α}} has components in the basis of vector fields {{math|'''f'''}}. These are determined by :<math>\alpha_i = \alpha \left(X_i\right)\,,\quad i = 1, 2, \dots, n\,.</math> Denote the [[row vector]] of these components by :<math>\alpha[\mathbf{f}] = \big\lbrack\begin{array}{cccc} \alpha_1 & \alpha_2 & \dots & \alpha_n \end{array}\big\rbrack \,.</math> Under a change of {{math|'''f'''}} by a matrix {{mvar|A}}, {{math|''α''['''f''']}} changes by the rule :<math>\alpha[\mathbf{f}A] = \alpha[\mathbf{f}]A \,.</math> That is, the row vector of components {{math|''α''['''f''']}} transforms as a ''covariant'' vector. For a pair {{mvar|α}} and {{mvar|β}} of covector fields, define the inverse metric applied to these two covectors by {{NumBlk|:|<math>\tilde{g}(\alpha,\beta) = \alpha[\mathbf{f}]G[\mathbf{f}]^{-1}\beta[\mathbf{f}]^\mathsf{T}.</math>|{{EquationRef|6}}}} The resulting definition, although it involves the choice of basis {{math|'''f'''}}, does not actually depend on {{math|'''f'''}} in an essential way. Indeed, changing basis to {{math|'''f'''''A''}} gives :<math>\begin{align} &\alpha[\mathbf{f}A] G[\mathbf{f}A]^{-1} \beta[\mathbf{f}A]^\mathsf{T} \\ ={} &\left(\alpha[\mathbf{f}]A\right) \left(A^{-1}G[\mathbf{f}]^{-1} \left(A^{-1}\right)^\mathsf{T}\right) \left(A^\mathsf{T}\beta[\mathbf{f}]^\mathsf{T}\right) \\ ={} &\alpha[\mathbf{f}] G[\mathbf{f}]^{-1} \beta[\mathbf{f}]^\mathsf{T}. \end{align} </math> So that the right-hand side of equation ({{EquationNote|6}}) is unaffected by changing the basis {{math|'''f'''}} to any other basis {{math|'''f'''''A''}} whatsoever. Consequently, the equation may be assigned a meaning independently of the choice of basis. The entries of the matrix {{math|''G''['''f''']}} are denoted by {{math|''g''<sup>''ij''</sup>}}, where the indices {{mvar|i}} and {{mvar|j}} have been raised to indicate the transformation law ({{EquationNote|5}}). ===Raising and lowering indices=== {{See also|Raising and lowering indices}} In a basis of vector fields {{math|'''f''' {{=}} (''X''<sub>1</sub>, ..., ''X''<sub>''n''</sub>)}}, any smooth tangent vector field {{mvar|X}} can be written in the form {{NumBlk|:|<math>X = v^1[\mathbf{f}]X_1 + v^2 [\mathbf{f}]X_2 + \dots + v^n[\mathbf{f}]X_n = \mathbf{f} \begin{bmatrix}v^1[\mathbf{f}] \\ v^2[\mathbf{f}] \\ \vdots \\ v^n[\mathbf{f}]\end{bmatrix} = \mathbf{f} v[\mathbf{f}] </math>|{{EquationRef|7}}}} for some uniquely determined smooth functions {{math|''v''<sup>1</sup>, ..., ''v''<sup>''n''</sup>}}. Upon changing the basis {{math|'''f'''}} by a nonsingular matrix {{mvar|A}}, the coefficients {{math|''v''<sup>''i''</sup>}} change in such a way that equation ({{EquationNote|7}}) remains true. That is, :<math>X = \mathbf{fA}v[\mathbf{fA}] = \mathbf{f}v[\mathbf{f}]\,.</math> Consequently, {{math|''v''['''f'''''A''] {{=}} ''A''<sup>−1</sup>''v''['''f''']}}. In other words, the components of a vector transform ''contravariantly'' (that is, inversely or in the opposite way) under a change of basis by the nonsingular matrix {{mvar|A}}. The contravariance of the components of {{math|''v''['''f''']}} is notationally designated by placing the indices of {{math|''v''<sup>''i''</sup>['''f''']}} in the upper position. A frame also allows covectors to be expressed in terms of their components. For the basis of vector fields {{math|'''f''' {{=}} (''X''<sub>1</sub>, ..., ''X''<sub>''n''</sub>)}} define the [[dual basis]] to be the [[linear functional]]s {{math|(''θ''<sup>1</sup>['''f'''], ..., ''θ''<sup>''n''</sup>['''f'''])}} such that :<math>\theta^i[\mathbf{f}](X_j) = \begin{cases} 1 & \mathrm{if}\ i=j\\ 0&\mathrm{if}\ i\not=j.\end{cases}</math> That is, {{math|''θ''<sup>''i''</sup>['''f'''](''X''<sub>''j''</sub>) {{=}} ''δ''<sub>''j''</sub><sup>''i''</sup>}}, the [[Kronecker delta]]. Let :<math>\theta[\mathbf{f}] = \begin{bmatrix}\theta^1[\mathbf{f}] \\ \theta^2[\mathbf{f}] \\ \vdots \\ \theta^n[\mathbf{f}]\end{bmatrix}.</math> Under a change of basis {{math|'''f''' ↦ '''f'''''A''}} for a nonsingular matrix {{math|''A''}}, {{math|''θ''['''f''']}} transforms via :<math>\theta[\mathbf{f}A] = A^{-1}\theta[\mathbf{f}].</math> Any linear functional {{mvar|α}} on tangent vectors can be expanded in terms of the dual basis {{mvar|θ}} {{NumBlk|:|<math>\begin{align} \alpha &= a_1[\mathbf{f}] \theta^1[\mathbf{f}] + a_2[\mathbf{f}] \theta^2[\mathbf{f}] + \cdots + a_n[\mathbf{f}] \theta^n[\mathbf{f}] \\[8pt] &= \big\lbrack\begin{array}{cccc}a_1[\mathbf{f}] & a_2[\mathbf{f}] & \dots & a_n[\mathbf{f}]\end{array}\big\rbrack \theta[\mathbf{f}] \\[8pt] &= a[\mathbf{f}] \theta[\mathbf{f}] \end{align}</math>|{{EquationRef|8}}}} where {{math|''a''['''f''']}} denotes the [[row vector]] {{math|[ ''a''<sub>1</sub>['''f'''] ... ''a''<sub>''n''</sub>['''f'''] ]}}. The components {{math|''a''<sub>''i''</sub>}} transform when the basis {{math|'''f'''}} is replaced by {{math|'''f'''''A''}} in such a way that equation ({{EquationNote|8}}) continues to hold. That is, :<math>\alpha = a[\mathbf{f}A]\theta[\mathbf{f}A] = a[\mathbf{f}]\theta[\mathbf{f}]</math> whence, because {{math|''θ''['''f'''''A''] {{=}} ''A''<sup>−1</sup>''θ''['''f''']}}, it follows that {{math|1=''a''['''f'''''A''] {{=}} ''a''['''f''']''A''}}. That is, the components {{mvar|a}} transform ''covariantly'' (by the matrix {{mvar|A}} rather than its inverse). The covariance of the components of {{math|''a''['''f''']}} is notationally designated by placing the indices of {{math|''a''<sub>''i''</sub>['''f''']}} in the lower position. Now, the metric tensor gives a means to identify vectors and covectors as follows. Holding {{math|''X''<sub>''p''</sub>}} fixed, the function :<math>g_p(X_p, -) : Y_p \mapsto g_p(X_p, Y_p)</math> of tangent vector {{math|''Y''<sub>''p''</sub>}} defines a [[linear functional]] on the tangent space at {{mvar|p}}. This operation takes a vector {{math|''X''<sub>''p''</sub>}} at a point {{mvar|p}} and produces a covector {{math|''g''<sub>''p''</sub>(''X''<sub>''p''</sub>, −)}}. In a basis of vector fields {{math|'''f'''}}, if a vector field {{mvar|X}} has components {{math|''v''['''f''']}}, then the components of the covector field {{math|''g''(''X'', −)}} in the dual basis are given by the entries of the row vector :<math>a[\mathbf{f}] = v[\mathbf{f}]^\mathsf{T} G[\mathbf{f}].</math> Under a change of basis {{math|'''f''' ↦ '''f'''''A''}}, the right-hand side of this equation transforms via :<math> v[\mathbf{f}A]^\mathsf{T} G[\mathbf{f}A] = v[\mathbf{f}]^\mathsf{T} \left(A^{-1}\right)^\mathsf{T} A^\mathsf{T} G[\mathbf{f}]A = v[\mathbf{f}]^\mathsf{T} G[\mathbf{f}]A </math> so that {{math|''a''['''f'''''A''] {{=}} ''a''['''f''']''A''}}: {{mvar|a}} transforms covariantly. The operation of associating to the (contravariant) components of a vector field {{math|''v''['''f'''] {{=}} [ ''v''<sup>1</sup>['''f'''] ''v''<sup>2</sup>['''f'''] ... ''v''<sup>''n''</sup>['''f'''] ]}}<sup>T</sup> the (covariant) components of the covector field {{math|''a''['''f'''] {{=}} [ ''a''<sub>1</sub>['''f'''] ''a''<sub>2</sub>['''f'''] … ''a''<sub>''n''</sub>['''f'''] ]}}, where :<math>a_i[\mathbf{f}] = \sum_{k=1}^n v^k[\mathbf{f}]g_{ki}[\mathbf{f}]</math> is called '''lowering the index'''. To ''raise the index'', one applies the same construction but with the inverse metric instead of the metric. If {{math|''a''['''f'''] {{=}} [ ''a''<sub>1</sub>['''f'''] ''a''<sub>2</sub>['''f'''] ... ''a''<sub>''n''</sub>['''f'''] ]}} are the components of a covector in the dual basis {{math|''θ''['''f''']}}, then the column vector {{NumBlk|:|<math>v[\mathbf{f}] = G^{-1}[\mathbf{f}]a[\mathbf{f}]^\mathsf{T}</math>|{{EquationRef|9}}}} has components which transform contravariantly: :<math>v[\mathbf{f}A] = A^{-1}v[\mathbf{f}].</math> Consequently, the quantity {{math|''X'' {{=}} '''f'''''v''['''f''']}} does not depend on the choice of basis {{math|'''f'''}} in an essential way, and thus defines a vector field on {{mvar|M}}. The operation ({{EquationNote|9}}) associating to the (covariant) components of a covector {{math|''a''['''f''']}} the (contravariant) components of a vector {{math|''v''['''f''']}} given is called '''raising the index'''. In components, ({{EquationNote|9}}) is :<math>v^i[\mathbf{f}] = \sum_{k=1}^n g^{ik}[\mathbf{f}] a_k[\mathbf{f}].</math> ===Induced metric=== <!--{{main|Induced metric}} Not currently well-written. --> Let {{mvar|U}} be an [[open set]] in {{math|'''ℝ'''<sup>''n''</sup>}}, and let {{mvar|φ}} be a [[continuously differentiable]] function from {{mvar|U}} into the [[Euclidean space]] {{math|'''ℝ'''<sup>''m''</sup>}}, where {{math|''m'' > ''n''}}. The mapping {{mvar|φ}} is called an [[immersion (mathematics)|immersion]] if its differential is [[injective]] at every point of {{mvar|U}}. The image of {{mvar|φ}} is called an [[immersed submanifold]]. More specifically, for {{math|1=''m'' = 3}}, which means that the ambient Euclidean space is {{math|'''ℝ'''<sup>''3''</sup>}}, the induced metric tensor is called the [[first fundamental form]]. Suppose that {{mvar|φ}} is an immersion onto the submanifold {{math|''M'' ⊂ '''R'''<sup>''m''</sup>}}. The usual Euclidean [[dot product]] in {{math|'''ℝ'''<sup>''m''</sup>}} is a metric which, when restricted to vectors tangent to {{mvar|M}}, gives a means for taking the dot product of these tangent vectors. This is called the '''induced metric'''. Suppose that {{mvar|v}} is a tangent vector at a point of {{mvar|U}}, say :<math>v = v^1\mathbf{e}_1 + \dots + v^n\mathbf{e}_n</math> where {{math|'''e'''<sub>''i''</sub>}} are the standard coordinate vectors in {{math|'''ℝ'''<sup>''n''</sup>}}. When {{mvar|φ}} is applied to {{mvar|U}}, the vector {{mvar|v}} goes over to the vector tangent to {{mvar|M}} given by :<math>\varphi_*(v) = \sum_{i=1}^n \sum_{a=1}^m v^i\frac{\partial \varphi^a}{\partial x^i}\mathbf{e}_a\,.</math> (This is called the [[pushforward (differential)|pushforward]] of {{mvar|v}} along {{mvar|φ}}.) Given two such vectors, {{mvar|v}} and {{mvar|w}}, the induced metric is defined by :<math>g(v,w) = \varphi_*(v)\cdot \varphi_*(w).</math> It follows from a straightforward calculation that the matrix of the induced metric in the basis of coordinate vector fields {{math|'''e'''}} is given by :<math>G(\mathbf{e}) = (D\varphi)^\mathsf{T}(D\varphi)</math> where {{mvar|Dφ}} is the Jacobian matrix: :<math>D\varphi = \begin{bmatrix} \frac{\partial\varphi^1}{\partial x^1} & \frac{\partial\varphi^1}{\partial x^2} & \dots & \frac{\partial\varphi^1}{\partial x^n} \\[1ex] \frac{\partial\varphi^2}{\partial x^1} & \frac{\partial\varphi^2}{\partial x^2} & \dots & \frac{\partial\varphi^2}{\partial x^n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial\varphi^m}{\partial x^1} & \frac{\partial\varphi^m}{\partial x^2} & \dots & \frac{\partial\varphi^m}{\partial x^n} \end{bmatrix}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)