Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Monte Carlo method
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Computational costs == Despite its conceptual and algorithmic simplicity, the computational cost associated with a Monte Carlo simulation can be staggeringly high. In general the method requires many samples to get a good approximation, which may incur an arbitrarily large total runtime if the processing time of a single sample is high.<ref name="sw09">{{cite book|author-last1=Shonkwiler |author-first1=R. W. |author-last2=Mendivil |author-first2=F. |title=Explorations in Monte Carlo Methods |year=2009 |publisher=Springer}}</ref> Although this is a severe limitation in very complex problems, the [[embarrassingly parallel]] nature of the algorithm allows this large cost to be reduced (perhaps to a feasible level) through [[parallel computing]] strategies in local processors, clusters, cloud computing, GPU, FPGA, etc.<ref>{{cite journal|author-last1=Atanassova |author-first1=E. |author-last2=Gurov |author-first2=T. |author-last3=Karaivanova |author-first3=A. |author-last4=Ivanovska |author-first4=S. |author-last5=Durchova |author-first5=M. |author-last6=Dimitrov |author-first6=D. |year=2016 |title=On the parallelization approaches for Intel MIC architecture |journal=AIP Conference Proceedings |volume=1773 |issue=1 |pages=070001 |doi=10.1063/1.4964983 |bibcode=2016AIPC.1773g0001A}}</ref><ref>{{cite journal|author-last1=Cunha Jr |author-first1=A. |author-last2=Nasser |author-first2=R. |author-last3=Sampaio |author-first3=R. |author-last4=Lopes |author-first4=H. |author-last5=Breitman |author-first5=K. |year=2014 |title=Uncertainty quantification through the Monte Carlo method in a cloud computing setting |journal=Computer Physics Communications |volume=185 |issue=5 |pages=1355–1363 |doi=10.1016/j.cpc.2014.01.006 |arxiv=2105.09512 |bibcode=2014CoPhC.185.1355C |s2cid=32376269}}</ref><ref>{{cite journal|author-last1=Wei |author-first1=J. |author-last2=Kruis |author-first2=F.E. |year=2013 |title=A GPU-based parallelized Monte-Carlo method for particle coagulation using an acceptance–rejection strategy |journal=Chemical Engineering Science |volume=104 |pages=451–459 |doi=10.1016/j.ces.2013.08.008|bibcode=2013ChEnS.104..451W }}</ref><ref>{{cite journal|author-last1=Lin |author-first1=Y. |author-last2=Wang |author-first2=F. |author-last3=Liu |author-first3=B. |year=2018 |title=Random number generators for large-scale parallel Monte Carlo simulations on FPGA |journal = Journal of Computational Physics |volume=360 |pages=93–103 |doi=10.1016/j.jcp.2018.01.029 |bibcode=2018JCoPh.360...93L}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)