Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Naive set theory
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Note on consistency === It does ''not'' follow from this definition ''how'' sets can be formed, and what operations on sets again will produce a set. The term "well-defined" in "well-defined collection of objects" cannot, by itself, guarantee the consistency and unambiguity of what exactly constitutes and what does not constitute a set. Attempting to achieve this would be the realm of axiomatic set theory or of axiomatic '''class theory'''. The problem, in this context, with informally formulated set theories, not derived from (and implying) any particular axiomatic theory, is that there may be several widely differing formalized versions, that have both different sets and different rules for how new sets may be formed, that all conform to the original informal definition. For example, Cantor's verbatim definition allows for considerable freedom in what constitutes a set. On the other hand, it is unlikely that Cantor was particularly interested in sets containing cats and dogs, but rather only in sets containing purely mathematical objects. An example of such a class of sets could be the [[von Neumann universe]]. But even when fixing the class of sets under consideration, it is not always clear which rules for set formation are allowed without introducing paradoxes. For the purpose of fixing the discussion below, the term "well-defined" should instead be interpreted as an ''intention'', with either implicit or explicit rules (axioms or definitions), to rule out inconsistencies. The purpose is to keep the often deep and difficult issues of consistency away from the, usually simpler, context at hand. An explicit ruling out of ''all'' conceivable inconsistencies (paradoxes) cannot be achieved for an axiomatic set theory anyway, due to Gödel's second incompleteness theorem, so this does not at all hamper the utility of naive set theory as compared to axiomatic set theory in the simple contexts considered below. It merely simplifies the discussion. Consistency is henceforth taken for granted unless explicitly mentioned.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)