Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Natural logarithm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Series == [[File:LogTay.svg|290px|thumb|right|The Taylor polynomials for {{math|ln(1 + ''x'')}} only provide accurate approximations in the range {{math|−1 < ''x'' ≤ 1}}. Beyond some {{math|''x'' > 1}}, the Taylor polynomials of higher degree are increasingly ''worse'' approximations.]] Since the natural logarithm is undefined at 0, <math>\ln(x)</math> itself does not have a [[Maclaurin series]], unlike many other elementary functions. Instead, one looks for Taylor expansions around other points. For example, if <math>\vert x - 1 \vert \leq 1 \text{ and } x \neq 0, </math> then<ref>{{cite web| url = http://www.math2.org/math/expansion/log.htm| title = "Logarithmic Expansions" at Math2.org}}</ref> <math display="block">\begin{align} \ln x &= \int_1^x \frac{1}{t} \, dt = \int_0^{x - 1} \frac{1}{1 + u} \, du \\ &= \int_0^{x - 1} (1 - u + u^2 - u^3 + \cdots) \, du \\ &= (x - 1) - \frac{(x - 1)^2}{2} + \frac{(x - 1)^3}{3} - \frac{(x - 1)^4}{4} + \cdots \\ &= \sum_{k=1}^\infty \frac{(-1)^{k-1} (x-1)^k}{k}. \end{align}</math> This is the [[Taylor series]] for <math>\ln x</math> around 1. A change of variables yields the [[Mercator series]]: <math display="block">\ln(1+x)=\sum_{k=1}^\infty \frac{(-1)^{k-1}}{k} x^k = x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots,</math> valid for <math>|x| \leq 1</math> and <math>x\ne -1.</math> [[Leonhard Euler]],<ref>[[Leonhard Euler]], Introductio in Analysin Infinitorum. Tomus Primus. Bousquet, Lausanne 1748. Exemplum 1, p. 228; quoque in: Opera Omnia, Series Prima, Opera Mathematica, Volumen Octavum, Teubner 1922</ref> disregarding <math>x\ne -1</math>, nevertheless applied this series to <math>x=-1</math> to show that the [[harmonic series (mathematics)|harmonic series]] equals the natural logarithm of <math>\frac{1}{1-1}</math>; that is, the logarithm of infinity. Nowadays, more formally, one can prove that the harmonic series truncated at {{mvar|N}} is close to the logarithm of {{mvar|N}}, when {{mvar|N}} is large, with the difference converging to the [[Euler–Mascheroni constant]]. The figure is a [[Graph of a function|graph]] of {{math|ln(1 + ''x'')}} and some of its [[Taylor polynomial]]s around 0. These approximations converge to the function only in the region {{math|−1 < ''x'' ≤ 1}}; outside this region, the higher-degree Taylor polynomials devolve to ''worse'' approximations for the function. A useful special case for positive integers {{mvar|n}}, taking <math>x = \tfrac{1}{n}</math>, is: <math display="block"> \ln \left(\frac{n + 1}{n}\right) = \sum_{k=1}^\infty \frac{(-1)^{k-1}}{k n^k} = \frac{1}{n} - \frac{1}{2 n^2} + \frac{1}{3 n^3} - \frac{1}{4 n^4} + \cdots</math> If <math>\operatorname{Re}(x) \ge 1/2,</math> then <math display="block">\begin{align} \ln (x) &= - \ln \left(\frac{1}{x}\right) = - \sum_{k=1}^\infty \frac{(-1)^{k-1} (\frac{1}{x} - 1)^k}{k} = \sum_{k=1}^\infty \frac{(x - 1)^k}{k x^k} \\ &= \frac{x - 1}{x} + \frac{(x - 1)^2}{2 x^2} + \frac{(x - 1)^3}{3 x^3} + \frac{(x - 1)^4}{4 x^4} + \cdots \end{align}</math> Now, taking <math>x=\tfrac{n+1}{n}</math> for positive integers {{mvar|n}}, we get: <math display="block"> \ln \left(\frac{n + 1}{n}\right) = \sum_{k=1}^\infty \frac{1}{k (n + 1)^k} = \frac{1}{n + 1} + \frac{1}{2 (n + 1)^2} + \frac{1}{3 (n + 1)^3} + \frac{1}{4 (n + 1)^4} + \cdots</math> If <math>\operatorname{Re}(x) \ge 0 \text{ and } x \neq 0,</math> then <math display="block"> \ln (x) = \ln \left(\frac{2x}{2}\right) = \ln\left(\frac{1 + \frac{x - 1}{x + 1}}{1 - \frac{x - 1}{x + 1}}\right) = \ln \left(1 + \frac{x - 1}{x + 1}\right) - \ln \left(1 - \frac{x - 1}{x + 1}\right). </math> Since <math display="block">\begin{align} \ln(1+y) - \ln(1-y)&= \sum^\infty_{i=1}\frac{1}{i}\left((-1)^{i-1}y^i - (-1)^{i-1}(-y)^i\right) = \sum^\infty_{i=1}\frac{y^i}{i}\left((-1)^{i-1} +1\right) \\ &= y\sum^\infty_{i=1}\frac{y^{i-1}}{i}\left((-1)^{i-1} +1\right)\overset{i-1\to 2k}{=}\; 2y\sum^\infty_{k=0}\frac{y^{2k}}{2k+1}, \end{align}</math> we arrive at <math display="block">\begin{align} \ln (x) &= \frac{2(x - 1)}{x + 1} \sum_{k = 0}^\infty \frac{1}{2k + 1} {\left(\frac{(x - 1)^2}{(x + 1)^2}\right)}^k \\ &= \frac{2(x - 1)}{x + 1} \left( \frac{1}{1} + \frac{1}{3} \frac{(x - 1)^2}{(x + 1)^2} + \frac{1}{5} {\left(\frac{(x - 1)^2}{(x + 1)^2}\right)}^2 + \cdots \right) . \end{align}</math> Using the substitution <math>x=\tfrac{n+1}{n}</math> again for positive integers {{mvar|n}}, we get: <math display="block">\begin{align} \ln \left(\frac{n + 1}{n}\right) &= \frac{2}{2n + 1} \sum_{k=0}^\infty \frac{1}{(2k + 1) ((2n + 1)^2)^k}\\ &= 2 \left(\frac{1}{2n + 1} + \frac{1}{3 (2n + 1)^3} + \frac{1}{5 (2n + 1)^5} + \cdots \right). \end{align}</math> This is, by far, the fastest converging of the series described here. The natural logarithm can also be expressed as an infinite product:<ref>{{cite web |last1=RUFFA |first1=Anthony |title=A PROCEDURE FOR GENERATING INFINITE SERIES IDENTITIES |url=https://www.emis.de/journals/HOA/IJMMS/2004/65-683653.pdf |website=International Journal of Mathematics and Mathematical Sciences |access-date=27 February 2022}} (Page 3654, equation 2.6)</ref> <math display="block">\ln(x)=(x-1) \prod_{k=1}^\infty \left ( \frac{2}{1+\sqrt[2^k]{x}} \right )</math> Two examples might be: <math display="block">\ln(2)=\left ( \frac{2}{1+\sqrt{2}} \right )\left ( \frac{2}{1+\sqrt[4]{2}} \right )\left ( \frac{2}{1+\sqrt[8]{2}} \right )\left ( \frac{2}{1+\sqrt[16]{2}} \right )...</math> <math display="block">\pi=(2i+2)\left ( \frac{2}{1+\sqrt{i}} \right )\left ( \frac{2}{1+\sqrt[4]{i}} \right )\left ( \frac{2}{1+\sqrt[8]{i}} \right )\left ( \frac{2}{1+\sqrt[16]{i}} \right )...</math> From this identity, we can easily get that: <math display="block">\frac{1}{\ln(x)}=\frac{x}{x-1}-\sum_{k=1}^\infty\frac{2^{-k}x^{2^{-k}}}{1+x^{2^{-k}}}</math> For example: <math display="block">\frac{1}{\ln(2)} = 2-\frac{\sqrt{2}}{2+2\sqrt{2}}-\frac{\sqrt[4]{2}}{4+4\sqrt[4]{2}}-\frac{\sqrt[8]{2}}{8+8\sqrt[8]{2}} \cdots</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)