Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Network analysis (electrical circuits)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Source transformation=== [[Image:Sourcetransform.svg|thumb]] A generator with an internal impedance (i.e. non-ideal generator) can be represented as either an ideal voltage generator or an ideal current generator plus the impedance. These two forms are equivalent and the transformations are given below. If the two networks are equivalent with respect to terminals ab, then {{mvar|V}} and {{mvar|I}} must be identical for both networks. Thus, :<math>V_\mathrm{s} = RI_\mathrm{s}\,\!</math> or <math>I_\mathrm{s} = \frac{V_\mathrm{s}}{R}</math> * [[Norton's theorem]] states that any two-terminal linear network can be reduced to an ideal current generator and a parallel impedance. * [[Thévenin's theorem]] states that any two-terminal linear network can be reduced to an ideal voltage generator plus a series impedance.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)