Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Neutron star
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== I-Love-Q Relations === There are three more properties of neutron stars that are dependent on the equation of state but can also be astronomically observed: the [[moment of inertia]], the [[quadrupole moment]], and the [[Love number]]. The moment of inertia of a neutron star describes how fast the star can rotate at a fixed spin momentum. The quadrupole moment of a neutron star specifies how much that star is deformed out of its spherical shape. The Love number of the neutron star represents how easy or difficult it is to deform the star due to [[tidal force]]s, typically important in binary systems. While these properties depend on the material of the star and therefore on the equation of state, there is a relation between these three quantities that is independent of the equation of state. This relation assumes slowly and uniformly rotating stars and uses general relativity to derive the relation. While this relation would not be able to add constraints to the equation of state, since it is independent of the equation of state, it does have other applications. If one of these three quantities can be measured for a particular neutron star, this relation can be used to find the other two. In addition, this relation can be used to break the degeneracies in detections by gravitational wave detectors of the quadrupole moment and spin, allowing the average spin to be determined within a certain confidence level.<ref>{{cite journal |last1=Yagi |first1=Kent |last2=Yunes |first2=Nicolás |title=I-Love-Q relations in neutron stars and their applications to astrophysics, gravitational waves, and fundamental physics |journal=Physical Review D |date=19 July 2013 |volume=88 |issue=2 |page=023009 |doi=10.1103/PhysRevD.88.023009|arxiv=1303.1528 |bibcode=2013PhRvD..88b3009Y }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)