Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Nyquist–Shannon sampling theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Sampling of non-baseband signals== As discussed by Shannon:<ref name="Shannon49"/> {{blockquote|A similar result is true if the band does not start at zero frequency but at some higher value, and can be proved by a linear translation (corresponding physically to [[single-sideband modulation]]) of the zero-frequency case. In this case the elementary pulse is obtained from <math>\sin(x)/x</math> by single-side-band modulation.}} That is, a sufficient no-loss condition for sampling [[signal (information theory)|signal]]s that do not have [[baseband]] components exists that involves the ''width'' of the non-zero frequency interval as opposed to its highest frequency component. See ''[[Sampling (signal processing)|sampling]]'' for more details and examples. For example, in order to sample [[FM broadcasting|FM radio]] signals in the frequency range of 100–102 [[megahertz|MHz]], it is not necessary to sample at 204 MHz (twice the upper frequency), but rather it is sufficient to sample at 4 MHz (twice the width of the frequency interval). A bandpass condition is that <math>X(f) = 0,</math> for all nonnegative <math>f</math> outside the open band of frequencies: :<math>\left(\frac{N}2 f_\mathrm{s}, \frac{N+1}2 f_\mathrm{s}\right),</math> for some nonnegative integer <math>N</math>. This formulation includes the normal baseband condition as the case <math>N=0.</math> The corresponding interpolation function is the impulse response of an ideal brick-wall [[bandpass filter]] (as opposed to the ideal [[brick-wall filter|brick-wall]] [[lowpass filter]] used above) with cutoffs at the upper and lower edges of the specified band, which is the difference between a pair of lowpass impulse responses: <math display="block">(N+1)\,\operatorname{sinc} \left(\frac{(N+1)t}T\right) - N\,\operatorname{sinc}\left( \frac{Nt}T \right).</math> Other generalizations, for example to signals occupying multiple non-contiguous bands, are possible as well. Even the most generalized form of the sampling theorem does not have a provably true converse. That is, one cannot conclude that information is necessarily lost just because the conditions of the sampling theorem are not satisfied; from an engineering perspective, however, it is generally safe to assume that if the sampling theorem is not satisfied then information will most likely be lost.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)