Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Observability
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Linear time-varying systems == Consider the [[continuous function|continuous]] [[linear]] [[time-variant system]] : <math>\dot{\mathbf{x}}(t) = A(t) \mathbf{x}(t) + B(t) \mathbf{u}(t) \, </math> : <math>\mathbf{y}(t) = C(t) \mathbf{x}(t). \, </math> Suppose that the matrices <math>A</math>, <math>B</math> and <math>C</math> are given as well as inputs and outputs <math>u</math> and <math>y</math> for all <math>t \in [t_0,t_1];</math> then it is possible to determine <math>x(t_0)</math> to within an additive constant vector which lies in the [[null space]] of <math>M(t_0,t_1)</math> defined by : <math>M(t_0,t_1) = \int_{t_0}^{t_1} \varphi(t,t_0)^{T}C(t)^{T}C(t)\varphi(t,t_0) \, dt</math> where <math>\varphi</math> is the [[state-transition matrix]]. It is possible to determine a unique <math>x(t_0)</math> if <math>M(t_0,t_1)</math> is [[Algebraic curve#Singularities|nonsingular]]. In fact, it is not possible to distinguish the initial state for <math>x_1</math> from that of <math>x_2</math> if <math>x_1 - x_2</math> is in the null space of <math>M(t_0,t_1)</math>. Note that the matrix <math>M</math> defined as above has the following properties: * <math>M(t_0,t_1)</math> is [[symmetric matrix|symmetric]] * <math>M(t_0,t_1)</math> is [[positive semidefinite matrix|positive semidefinite]] for <math>t_1 \geq t_0</math> * <math>M(t_0,t_1)</math> satisfies the linear [[matrix differential equation]] :: <math>\frac{d}{dt}M(t,t_1) = -A(t)^{T}M(t,t_1)-M(t,t_1)A(t)-C(t)^{T}C(t), \; M(t_1,t_1) = 0</math> * <math>M(t_0,t_1)</math> satisfies the equation :: <math>M(t_0,t_1) = M(t_0,t) + \varphi(t,t_0)^T M(t,t_1)\varphi(t,t_0)</math><ref>{{cite book|first=Roger W.|last=Brockett|title=Finite Dimensional Linear Systems|publisher=John Wiley & Sons|year=1970|isbn=978-0-471-10585-5}}</ref> === Observability matrix generalization === The system is observable in <math>[t_0,t_1]</math> if and only if there exists an interval <math>[t_0,t_1]</math> in <math>\mathbb{R}</math> such that the matrix <math>M(t_0,t_1)</math> is nonsingular. If <math>A(t), C(t)</math> are analytic, then the system is observable in the interval [<math>t_0</math>,<math>t_1</math>] if there exists <math>\bar{t} \in [t_0,t_1]</math> and a positive integer ''k'' such that<ref name=":0">Eduardo D. Sontag, Mathematical Control Theory: Deterministic Finite Dimensional Systems.</ref> : <math> \operatorname{rank} \begin{bmatrix} & N_0(\bar{t}) & \\ & N_1(\bar{t}) & \\ & \vdots & \\ & N_{k}(\bar{t}) & \end{bmatrix} = n, </math> where <math>N_0(t):=C(t)</math> and <math>N_i(t)</math> is defined recursively as : <math>N_{i+1}(t) := N_i(t)A(t) + \frac{\mathrm{d}}{\mathrm{d} t}N_i(t),\ i = 0, \ldots, k-1 </math> ==== Example ==== Consider a system varying analytically in <math> (-\infty,\infty) </math> and matrices<blockquote><math>A(t) = \begin{bmatrix} t & 1 & 0\\ 0 & t^{3} & 0\\ 0 & 0 & t^{2} \end{bmatrix},\, C(t) = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}.</math> </blockquote>Then <math> \begin{bmatrix} N_0(0) \\ N_1(0) \\ N_2(0) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1& 0 & 0 \end{bmatrix}</math> , and since this matrix has rank = 3, the system is observable on every nontrivial interval of <math>\mathbb{R}</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)