Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Octonion
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Conjugate, norm, and inverse=== The ''conjugate'' of an octonion :<math> x = x_0\ e_0 + x_1\ e_1 + x_2\ e_2 + x_3\ e_3 + x_4\ e_4 + x_5\ e_5 + x_6\ e_6 + x_7\ e_7 </math> is given by :<math> x^* = x_0\ e_0 - x_1\ e_1 - x_2\ e_2 - x_3\ e_3 - x_4\ e_4 - x_5\ e_5 - x_6\ e_6 - x_7\ e_7 ~.</math> Conjugation is an [[involution (mathematics)|involution]] of <math>\ \mathbb{O}\ </math> and satisfies {{math|(''xy'')* {{=}} ''y''*''x''*}} (note the change in order). The ''real part'' of {{mvar|x}} is given by :<math>\frac{x + x^*}{2} = x_0\ e_0</math> and the ''imaginary part'' (sometimes called the ''pure part'') by :<math> \frac{x - x^*}{2} = x_1\ e_1 + x_2\ e_2 + x_3\ e_3 + x_4\ e_4 + x_5\ e_5 + x_6\ e_6 + x_7\ e_7 ~.</math> The set of all purely imaginary octonions [[linear span|spans]] a 7 [[dimension (vector space)|dimensional]] [[linear subspace|subspace]] of <math>\ \mathbb{O}\ ,</math> denoted <math>\ \operatorname\mathcal{I_m}\bigl[\ \mathbb{O}\ \bigr] ~.</math> Conjugation of octonions satisfies the equation :<math> -6 x^* = x + (e_1x)e_1 + (e_2x)e_2 + (e_3x)e_3 + (e_4x)e_4 + (e_5x)e_5 + (e_6x)e_6 + (e_7x)e_7 ~.</math> The product of an octonion with its conjugate, {{nobr| {{math|''x''*''x'' {{=}} ''xx''*}} ,}} is always a nonnegative real number: :<math>x^*x = x_0^2 + x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 + x_6^2 + x_7^2 ~.</math> Using this, the norm of an octonion is defined as :<math>\|x\| = \sqrt{x^*x} ~.</math> This norm agrees with the standard 8 dimensional [[Euclidean norm]] on {{math|β<sup>8</sup>}}. The existence of a norm on <math>\ \mathbb{O}\ </math> implies the existence of [[inverse element|inverses]] for every nonzero element of <math>\ \mathbb{O} ~.</math> The inverse of{{nobr| {{math| ''x'' β 0}} ,}} which is the unique octonion {{math|''x''<sup>β1</sup>}} satisfying {{nobr|{{math| ''x x''<sup>β1</sup> {{=}} ''x''<sup>β1</sup>''x'' {{=}} 1}} ,}} is given by :<math>x^{-1} = \frac {x^*}{\|x\|^2} ~.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)