Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Partial function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== In abstract algebra === [[Partial algebra]] generalizes the notion of [[universal algebra]] to partial [[Operation (mathematics)|operations]]. An example would be a [[Field (mathematics)|field]], in which the multiplicative inversion is the only proper partial operation (because [[division by zero]] is not defined).<ref name="RosenbergSabidussi1993">{{cite book|editor1=Ivo G. Rosenberg |editor2=Gert Sabidussi|title=Algebras and Orders|year=1993|publisher=Springer Science & Business Media|isbn=978-0-7923-2143-9|author=Peter Burmeister|chapter=Partial algebras β an introductory survey}}</ref> The set of all partial functions (partial [[Transformation (function)|transformation]]s) on a given base set, <math>X,</math> forms a [[regular semigroup]] called the semigroup of all partial transformations (or the partial transformation semigroup on <math>X</math>), typically denoted by <math>\mathcal{PT}_X.</math><ref name="CliffordPreston1967">{{cite book|author1=Alfred Hoblitzelle Clifford|author2=G. B. Preston|title=The Algebraic Theory of Semigroups. Volume II|url=https://books.google.com/books?id=756KAwAAQBAJ&pg=PR12|year=1967|publisher=American Mathematical Soc.|isbn=978-0-8218-0272-4|page=xii}}</ref><ref name="Higgins1992">{{cite book|author=Peter M. Higgins|title=Techniques of semigroup theory|year=1992|publisher=Oxford University Press, Incorporated|isbn=978-0-19-853577-5|page=4}}</ref><ref name="GanyushkinMazorchuk2008">{{cite book|author1=Olexandr Ganyushkin|author2=Volodymyr Mazorchuk|title=Classical Finite Transformation Semigroups: An Introduction|url=https://archive.org/details/classicalfinitet00gany_719|url-access=limited|year=2008|publisher=Springer Science & Business Media|isbn=978-1-84800-281-4|pages=[https://archive.org/details/classicalfinitet00gany_719/page/n26 16] and 24}}</ref> The set of all partial bijections on <math>X</math> forms the [[symmetric inverse semigroup]].<ref name="CliffordPreston1967"/><ref name="Higgins1992"/>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)