Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Path integral formulation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Simple harmonic oscillator === {{see also|Propagator#Basic examples: propagator of free particle and harmonic oscillator| Mehler kernel}} The Lagrangian for the simple harmonic oscillator is<ref>{{cite web |last1=Hilke |first1=M. |title=Path Integral |work=221A Lecture Notes |url=http://hitoshi.berkeley.edu/221A/pathintegral.pdf}}</ref> : <math>\mathcal{L} = \tfrac12 m \dot{x}^2 - \tfrac12 m \omega^2 x^2.</math> Write its trajectory {{math|''x''(''t'')}} as the classical trajectory plus some perturbation, {{math|''x''(''t'') {{=}} ''x''<sub>c</sub>(''t'') + ''δx''(''t'')}} and the action as {{math|''S'' {{=}} ''S''<sub>c</sub> + ''δS''}}. The classical trajectory can be written as : <math>x_\text{c}(t) = x_i \frac{\sin\omega(t_f - t)}{\sin\omega(t_f - t_i)} + x_f \frac{\sin\omega(t - t_i)}{\sin\omega(t_f - t_i)}.</math> This trajectory yields the classical action : <math> \begin{align} S_\text{c} & = \int_{t_i}^{t_f} \mathcal{L} \,dt = \int_{t_i}^{t_f} \left(\tfrac12 m\dot{x}^2 - \tfrac12 m\omega^2 x^2 \right) \,dt \\[6pt] & = \frac 1 2 m\omega \left( \frac{(x_i^2 + x_f^2) \cos\omega(t_f - t_i) - 2 x_i x_f}{\sin\omega(t_f - t_i)} \right)~. \end{align} </math> Next, expand the deviation from the classical path as a Fourier series, and calculate the contribution to the action {{mvar|δS}}, which gives : <math>S = S_\text{c} + \sum_{n = 1}^\infty \tfrac12 a_n^2 \frac{m}{2} \left( \frac{(n \pi)^2}{t_f - t_i} - \omega^2(t_f - t_i) \right).</math> This means that the propagator is : <math> \begin{align} K(x_f, t_f; x_i, t_i) & = Q e^\frac{i S_\text{c}}{\hbar} \prod_{j=1}^\infty \frac{j \pi}{\sqrt{2}} \int da_j \exp{\left( \frac{i}{2\hbar}a_j^2 \frac{m}{2} \left( \frac{(j \pi)^2}{t_f - t_i} - \omega^2(t_f - t_i) \right) \right)} \\[6pt] & = e^\frac{i S_\text{c}}{\hbar} Q \prod_{j=1}^\infty \left( 1 - \left( \frac{\omega(t_f - t_i)}{j \pi} \right)^2 \right)^{-\frac12} \end{align} </math> for some normalization : <math> Q = \sqrt{\frac{m}{2\pi i \hbar (t_f - t_i)}}~. </math> Using the infinite-product representation of the [[sinc function]], : <math>\prod_{j=1}^\infty \left( 1 - \frac{x^2}{j^2} \right) = \frac{\sin\pi x}{\pi x}, </math> the propagator can be written as : <math> K(x_f, t_f; x_i, t_i) = Q e^\frac{i S_\text{c}}{\hbar} \sqrt{ \frac{\omega(t_f - t_i)}{\sin\omega(t_f - t_i)} } = e^\frac{i S_c}{\hbar} \sqrt{ \frac{m\omega}{2\pi i \hbar \sin\omega(t_f - t_i)}}.</math> Let {{math|''T'' {{=}} ''t<sub>f</sub>'' − ''t<sub>i</sub>''}}. One may write this propagator in terms of energy eigenstates as : <math> \begin{align} K(x_f, t_f; x_i, t_i) & = \left( \frac{m \omega}{2 \pi i \hbar \sin\omega T } \right)^\frac12 \exp{ \left( \frac{i}{\hbar} \tfrac12 m \omega \frac{ (x_i^2 + x_f^2) \cos \omega T - 2 x_i x_f }{ \sin \omega T } \right) } \\[6pt] & = \sum_{n = 0}^\infty \exp{ \left( - \frac{i E_n T}{\hbar} \right) } \psi_n(x_f) \psi_n(x_i)^{*}~. \end{align} </math> Using the identities {{math|''i'' sin ''ωT'' {{=}} {{sfrac|1|2}}''e''<sup>''iωT''</sup> (1 − ''e''<sup>−2''iωT''</sup>)}} and {{math|cos ''ωT'' {{=}} {{sfrac|1|2}}''e''<sup>''iωT''</sup> (1 + ''e''<sup>−2''iωT''</sup>)}}, this amounts to : <math>K(x_f, t_f; x_i, t_i) = \left( \frac{m \omega}{\pi \hbar} \right)^\frac12 e^\frac{-i \omega T} 2 \left( 1 - e^{-2 i \omega T} \right)^{-\frac12} \exp{ \left( - \frac{m \omega}{2 \hbar} \left( \left(x_i^2 + x_f^2\right) \frac{ 1 + e^{-2 i \omega T} }{ 1 - e^{- 2 i \omega T}} - \frac{4 x_i x_f e^{-i \omega T}}{1 - e^{ - 2 i \omega T} }\right) \right) }.</math> One may absorb all terms after the first {{math|''e''<sup>−''iωT''/2</sup>}} into {{math|''R''(''T'')}}, thereby obtaining : <math> K(x_f, t_f; x_i, t_i) = \left( \frac{m \omega}{\pi \hbar} \right)^\frac12 e^\frac{-i \omega T } 2 \cdot R(T).</math> One may finally expand {{math|''R''(''T'')}} in powers of {{math|''e''<sup>−''iωT''</sup>}}: All terms in this expansion get multiplied by the {{math|''e''<sup>−''iωT''/2</sup>}} factor in the front, yielding terms of the form : <math>e^\frac{-i\omega T}{2} e^{-i n\omega T} = e^{-i \omega T \left( \frac12 + n\right) } \quad\text{for } n = 0, 1, 2, \ldots.</math> Comparison to the above eigenstate expansion yields the standard energy spectrum for the simple harmonic oscillator, : <math>E_n = \left( n + \tfrac12 \right) \hbar \omega~.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)