Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Percolation theory
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Applications == === In biology, biochemistry, and physical virology === Percolation theory has been used to successfully predict the fragmentation of biological virus shells (capsids),<ref name="Brunk Twarock p. ">{{cite journal | last1=Brunk | first1=Nicholas E. | last2=Twarock | first2=Reidun | title=Percolation Theory Reveals Biophysical Properties of Virus-like Particles | journal=ACS Nano | publisher=American Chemical Society (ACS) | date=2021 | volume=15 | issue=8 | pages=12988β12995 | issn=1936-0851 | doi=10.1021/acsnano.1c01882 | pmid=34296852 | pmc=8397427 | doi-access=free }}</ref><ref>{{cite journal | last1 = Brunk | first1 = N. E. | last2 = Lee | first2 = L. S. | last3 = Glazier | first3 = J. A. | last4 = Butske | first4 = W. | last5 = Zlotnick | first5 = A. | year = 2018 | title = Molecular Jenga: the percolation phase transition (collapse) in virus capsids | journal = Physical Biology | volume = 15 | issue = 5| page = 056005 | doi=10.1088/1478-3975/aac194| pmid = 29714713 | pmc = 6004236 | bibcode = 2018PhBio..15e6005B }}</ref> with the fragmentation threshold of [[Hepatitis B]] virus [[capsid]] predicted and detected experimentally.<ref>{{cite journal | last1 = Lee | first1 = L. S. | last2 = Brunk | first2 = N. | last3 = Haywood | first3 = D. G. | last4 = Keifer | first4 = D. | last5 = Pierson | first5 = E. | last6 = Kondylis | first6 = P. | last7 = Zlotnick | first7 = A. | year = 2017 | title = A molecular breadboard: Removal and replacement of subunits in a hepatitis B virus capsid | journal = Protein Science | volume = 26 | issue = 11| pages = 2170β2180 | doi=10.1002/pro.3265| pmid = 28795465 | pmc = 5654856 }}</ref> When a critical number of subunits has been randomly removed from the nanoscopic shell, it fragments and this fragmentation may be detected using Charge Detection Mass Spectroscopy (CDMS) among other single-particle techniques. This is a molecular analog to the common board game [[Jenga]], and has relevance to the broader study of virus disassembly. More stable viral particles (tilings with greater fragmentation thresholds) are found in greater abundance in nature.<ref name="Brunk Twarock p. "/> === In ecology === Percolation theory has been applied to studies of how environment fragmentation impacts animal habitats<ref>{{Cite journal|last1=Boswell|first1=G. P.|last2=Britton|first2=N. F.|last3=Franks|first3=N. R.|date=1998-10-22|title=Habitat fragmentation, percolation theory and the conservation of a keystone species|journal=Proceedings of the Royal Society of London B: Biological Sciences|language=en|volume=265|issue=1409|pages=1921β1925|doi=10.1098/rspb.1998.0521|issn=0962-8452|pmc=1689475}}</ref> and models of how the plague bacterium ''[[Yersinia pestis]]'' spreads.<ref>{{Cite journal|last1=Davis|first1=S.|last2=Trapman|first2=P.|last3=Leirs|first3=H.|last4=Begon|first4=M.|last5=Heesterbeek|first5=J. a. P.|date=2008-07-31|title=The abundance threshold for plague as a critical percolation phenomenon|journal=Nature|volume=454|issue=7204|pages=634β637|doi=10.1038/nature07053|issn=1476-4687|pmid=18668107|bibcode=2008Natur.454..634D|hdl=1874/29683|s2cid=4425203|hdl-access=free}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)