Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Peripatric speciation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Hawaiian archipelago === {{multiple image|direction=vertical |width=300 |image1=Hawaii speciation (Drosophila and Cyanea colonization).png |caption1=Colonization events of species from the genus ''[[Cyanea (plant)|Cyanea]]'' (green) and species from the genus ''[[Drosophila]]'' (blue) on the Hawaiian island chain. Islands age from left to right, ([[Kauai]] being the oldest and [[Hawaii]] being the youngest). Speciation arises peripatrically as they spatiotemporally colonize new islands along the chain. Lighter blue and green indicate colonization in the reverse direction from young-to-old. |image2=Theridion grallator colonization pattern (Hawaiian volcano populations).png |caption2=A map of the Hawaiian archipelago showing the colonization routes of ''[[Theridion grallator]]'' superimposed. Purple lines indicate colonization occurring in conjunction with island age where light purple indicates backwards colonization. ''T. grallator'' is not present on Kauai or [[Niihau]] so colonization may have occurred from there, or the nearest continent.|image3=Elepaio colonization of Hawaiian archipelago.png |caption3=The sequential colonization and speciation of the [[w:‘Elepaio|‘Elepaio]] subspecies along the Hawaiian island chain.}} ''[[Drosophila]]'' species on the [[Hawaii|Hawaiian archipelago]] have helped researchers understand speciation processes in great detail. It is well established that ''Drosophila'' has undergone an [[adaptive radiation]] into hundreds of [[Endemism in the Hawaiian Islands|endemic species on the Hawaiian island chain]];<ref name="Speciation"/>{{rp|107}}<ref>{{Citation |title=Modes and Mechanisms of Speciation |author=Hannes Schuler, Glen R. Hood, Scott P. Egan, & Jeffrey L. Feder |editor1-first=Robert A |editor1-last=Meyers |journal=Reviews in Cell Biology and Molecular Medicine |year=2016 |volume=2 |issue=3 |pages=60–93 |doi=10.1002/3527600906 |isbn=9783527600908 }}</ref> originating from a single common ancestor (supported from molecular analysis).<ref>DeSalle R. (1995). Molecular approaches to biogeographic analysis of Hawaiian Drosophilidae. Pp. 72-89 ''in'' W.L. Wagner and V.A. Funk (eds.) ''Hawaiian Biogeography: Evolution on a Hot-Spot Archipeligo.'' Smithsonian Institution Press, Washington DC.</ref> Studies consistently find that colonization of each island occurred from older to younger islands, and in ''Drosophila'', speciating peripatrically at least fifty percent of the time.<ref name="Speciation"/>{{rp|108}} In conjunction with ''Drosophila'', Hawaiian lobeliads (''[[Cyanea (plant)|Cyanea]]'') have also undergone an adaptive radiation, with upwards of twenty-seven percent of [[extant taxon|extant]] species arising after new island colonization—exemplifying peripatric speciation—once again, occurring in the old-to-young island direction.<ref>{{cite journal|title=Adaptive plant evolution on islands: classical patterns, molecular data, new insights |author=T. J. Givnish |journal=Evolution on Islands |year=1998 |volume=281 |page=304 }}</ref><ref>T. J. Givnish, K. J. Sytsma, W. J. Hahn, and J. F. Smith. (1995). Molecular evolution, adaptive radiation, and geographic speciation in ''Cyanea'' (Campanulaceae, Lobeliodeae). Pp. 259-301 ''in'' W.L. Wagner and V.A. Funk (eds.) ''Hawaiian Biogeography: Evolution on a Hot-Spot Archipeligo.'' Smithsonian Institution Press, Washington DC.</ref><ref>{{Citation |title=Origin, adaptive radiation and diversification of the Hawaiian lobeliads (Asterales: Campanulaceae) |author=Thomas J. Givnish, Kendra C. Millam, Austin R. Mast, Thomas B. Paterson, Terra J. Theim, Andrew L. Hipp, Jillian M. Henss, James F. Smith, Kenneth R. Wood, & Kenneth J. Sytsma |journal=Proc. R. Soc. B |year=2009 |volume=276 |issue= 1656|pages=407–416 |doi= 10.1098/rspb.2008.1204|pmid=18854299 |pmc=2664350 }}</ref> Other endemic species in Hawaii also provide evidence of peripatric speciation such as the endemic flightless crickets (''[[Laupala]]''). It has been estimated that, "17 species out of 36 well-studied cases of [''Laupala''] speciation were peripatric".<ref name="Speciation"/>{{rp|108}}<ref>{{Citation |title=Conflict between nuclear and mitochondrial DNA phylogenies of a recent species radiation: What mtDNA reveals and conceals about modes of speciation in Hawaiian crickets| author=Kerry L. Shaw| journal=PNAS| year=2002| volume=99| issue=25| pages=16122–16127| doi=10.1073/pnas.242585899| pmid=12451181| pmc=138575| bibcode=2002PNAS...9916122S| doi-access=free}}</ref> Plant species in genera's such as ''[[Dubautia]]'', ''[[Wilkesia]]'', and ''[[Argyroxiphium]]'' have also radiated along the archipelago.<ref>{{Citation |title=Evolution in the Madiinae: Evidence from Enzyme Electrophoresis |author=Martha S. Witter |journal=Annals of the Missouri Botanical Garden |year=1990 |volume=77 |issue=1 |pages=110–117 |doi=10.2307/2399630|jstor=2399630 |url=https://www.biodiversitylibrary.org/part/7543 }}</ref> Other animals besides insects show this same pattern such as the Hawaiian amber snail (''[[Succinea caduca]]''),<ref>{{Citation |title=A geographic mosaic of passive dispersal: population structure in the endemic Hawaiian amber snail Succinea caduca (Mighels, 1845) |author=Brenden S. Holland and Robert H. Cowie |journal=Molecular Ecology |year=2007 |volume=16 |issue= 12|pages=2422–2435 |doi=10.1111/j.1365-294X.2007.03246.x |pmid=17561903 |bibcode=2007MolEc..16.2422H |s2cid=32193624 }}</ref> and [[‘Elepaio]] flycatchers.<ref>{{Citation |title=Stepping stone speciation in Hawaii's flycatchers: molecular divergence supports new island endemics within the elepaio |author=Eric A. VanderWerf, Lindsay C. Young, Norine W. Yeung, & David B. Carlon |journal=Conservation Genetics |year=2010 |volume=11 |issue= 4|pages=1283–1298 |doi=10.1007/s10592-009-9958-1 |bibcode=2010ConG...11.1283V |s2cid=35883704 }}</ref> ''[[Tetragnatha]]'' spiders have also speciated peripatrically on the Hawaiian islands,<ref>Rosemary G. Gillespie & H. B. Croom. (1995). Comparison of speciation mechanisms in web-building and non-web-building groups within a lineage of spiders. In W.L. Wagner & V.A. Funk (eds.) ''Hawaiian Biogeography: Evolution on a Hot-Spot Archipeligo'', Smithsonian Institution Press, Washington DC. Pp. 121-146.</ref><ref>{{Citation |title=Geographical context of speciation in a radiation of Hawaiian ''Tetragnatha'' spiders (Aranae, Tetragnathidae |author=Rosemary G. Gillespie |journal=The Journal of Arachnology |year=2005 |volume=33 |issue=2 |pages=313–322 |doi=10.1636/05-15.1|s2cid=11856750 |url=https://www.biodiversitylibrary.org/part/228841 }}</ref> Numerous arthropods have been documented existing in patterns consistent with the geologic evolution of the island chain, in such that, phylogenetic reconstructions find younger species inhabiting the geologically younger islands and older species inhabiting the older islands<ref>{{Citation |title=Community Assembly Through Adaptive Radiation in Hawaiian Spiders |author=Rosemary G. Gillespie |journal=Science |year=2004 |volume=303 |issue=5656 |pages=356–359 |doi=10.1126/science.1091875 |pmid=14726588 |bibcode=2004Sci...303..356G |s2cid=7748888 }}</ref> (or in some cases, ancestors date back to when islands currently below sea level were exposed). Spiders such as those from the genus ''[[Orsonwelles]]'' exhibit patterns compatible with the old-to-young geology.<ref>{{Citation |title=Speciation on a Conveyor Belt: Sequential Colonization of the Hawaiian Islands by Orsonwelles Spiders (Araneae, Linyphiidae) |author=Gustavo Hormiga, Miquel Arnedo, and Rosemary G. Gillespie |journal=Systematic Biology |year=2003 |volume=52 |issue=1 |pages=70–88 |doi=10.1080/10635150390132786 |pmid=12554442 |doi-access=free }}</ref> Other endemic genera such as ''[[Argyrodes]]'' have been shown to have speciated along the island chain.<ref>Rosemary G. Gillespie, Malia A. J. Rivera, & Jessica E. Garb. (1998). Sun, surf and spiders: taxonomy and phylogeography of Hawaiian Araneae. ''Proceedings of the 17th European Colloquium of Arachnology''.</ref> ''[[Pagiopalus]]'', ''[[Pedinopistha]]'', and part of the family [[Thomisidae]] have adaptively radiated along the island chain,<ref>{{Citation |title=An Adaptive Radiation of Hawaiian Thomisidae: Biogreographic and Genetic Evidence| author=Jessica E. Garb |journal=The Journal of Arachnology |year=1999 |volume=27 |pages=71–78 }}</ref> as well as the wolf spider family, [[Lycosidae]].<ref>{{Citation |title=The cavernicolous fauna of Hawaiian lava tubes. 3. Araneae (Spiders) |author=W. J. Gertsch |journal=Pacific Insects |year=1973 |volume=15 |pages=163–180}}</ref> A host of other Hawaiian endemic arthropod species and genera have had their speciation and phylogeographical patterns studied: the ''[[Drosophila grimshawi]]'' species complex,<ref>{{Citation |title=Phylogeny of the Island Populations of the Hawaiian Drosophila grimshawi Complex: Evidence from Combined Data |author=Fabio Piano, Elysse M. Craddock, & Michael P. Kambysellis |journal=Molecular Phylogenetics and Evolution |year=1997 |volume=7 |issue=2 |pages=173–184 |doi= 10.1006/mpev.1996.0387|pmid=9126558 |doi-access=free |bibcode=1997MolPE...7..173P }}</ref> [[damselflies]] (''[[Megalagrion]] xanthomelas'' and ''Megalagrion pacificum''),<ref>{{Citation |title=Phylogeographic patterns of Hawaiian Megalagrion damselflies (Odonata: Coenagrionidae) correlate with Pleistocene island boundaries |author=Steve Jordan, [[Chris Simon (biologist)|Chris Simon]], David Foote, and Ronald A. Englund |journal=Molecular Ecology |year=2005 |volume=14 |issue= 11|pages=3457–3470 |doi=10.1111/j.1365-294X.2005.02669.x |pmid=16156815 |bibcode=2005MolEc..14.3457J |s2cid=42614215 }}</ref> ''[[Doryonychus raptor]]'', ''[[Littorophiloscia hawaiiensis]]'', ''[[Anax strenuus]]'', ''[[Nesogonia blackburni]]'', ''[[Theridion grallator]]'',<ref>{{Citation |title=Colonization history and population genetics of the color-polymorphic Hawaiian happy-face spider ''Theridion grallator'' (Araneae, Theridiidae) |author=Peter J. P. Croucher, Geoff S. Oxford, Athena Lam, Neesha Mody, & Rosemary G. Gillespie |journal=Evolution |year=2012 |volume=66 |issue=9 |pages=2815–2833 |doi=10.1111/j.1558-5646.2012.01653.x|pmid=22946805 |s2cid=28684202 |doi-access=free }}</ref> ''[[Vanessa tameamea]]'', ''[[Hyalopeplus pellucidus]]'', ''[[Coleotichus blackburniae]]'', ''[[Labula]]'', ''[[Hawaiioscia]]'', ''[[Banza (insect)|Banza]]'' (in the family [[Tettigoniidae]]), ''[[Caconemobius]]'', ''[[Eupethicea]]'', ''[[Ptycta]]'', ''[[Megalagrion]]'', ''[[Prognathogryllus]]'', ''[[Nesosydne]]'', ''[[Cephalops]]'', ''[[Trupanea]]'', and the tribe [[Platynini]]—all suggesting repeated radiations among the islands.<ref>{{Citation |title=Speciation and phylogeography of Hawaiian terrestrial arthropods |author=G. K. Roderick & R. G. Gillespie |journal=Molecular Ecology |year=1998 |volume=7 |issue=4 |pages=519–531 |doi=10.1046/j.1365-294x.1998.00309.x|pmid=9628003 |bibcode=1998MolEc...7..519R |s2cid=29359389 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)