Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Polygonal number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Table of values== The first 6 values in the column "sum of reciprocals", for triangular to octagonal numbers, come from a published solution to the general problem, which also gives a general formula for any number of sides, in terms of the [[digamma function]].<ref name="siam_07-003s">{{Cite web |url=http://www.siam.org/journals/problems/downloadfiles/07-003s.pdf |title=Sums of Reciprocals of Polygonal Numbers and a Theorem of Gauss |access-date=2010-06-13 |archive-url=https://web.archive.org/web/20110615085610/http://www.siam.org/journals/problems/downloadfiles/07-003s.pdf |archive-date=2011-06-15 |url-status=dead }}</ref> {| class="wikitable" |- ! rowspan="2"|{{mvar|s}} ! rowspan="2"|Name ! rowspan="2"|Formula ! colspan="10"| {{mvar|n}} ! rowspan="2" align="right" | Sum of reciprocals<ref name="siam_07-003s" /><ref>{{Cite web |url=http://www.math.psu.edu/sellersj/downey_ong_sellers_cmj_preprint.pdf |title=Beyond the Basel Problem: Sums of Reciprocals of Figurate Numbers |access-date=2010-05-13 |archive-date=2013-05-29 |archive-url=https://web.archive.org/web/20130529032918/http://www.math.psu.edu/sellersj/downey_ong_sellers_cmj_preprint.pdf |url-status=dead }}</ref> ! rowspan="2" align="center" | [[On-Line Encyclopedia of Integer Sequences|OEIS]] number |- ! 1 !! 2 !! 3 !! 4 !! 5 !! 6 !! 7 !! 8 !! 9 !! 10 |- | align="right" | [[Digon|2]] | [[Natural number|Natural]] (line segment) | align="center" | {{math|{{sfrac|1|2}}(''0n''<sup>2</sup> + ''2n'') {{=}} ''n''}} | align="right" | 1 | align="right" | 2 | align="right" | 3 | align="right" | 4 | align="right" | 5 | align="right" | 6 | align="right" | 7 | align="right" | 8 | align="right" | 9 | align="right" | 10 | align="center" | β ([[Harmonic series (mathematics)|diverges]]) | {{OEIS link|id=A000027}} |- | align="right" | [[triangle|3]] | [[Triangular number|Triangular]] | align="center" | {{math|{{sfrac|1|2}}(''n''<sup>2</sup> + ''n'')}} | align="right" | 1 | align="right" | 3 | align="right" | 6 | align="right" | 10 | align="right" | 15 | align="right" | 21 | align="right" | 28 | align="right" | 36 | align="right" | 45 | align="right" | 55 | align="center" | 2<ref name="siam_07-003s" /> | {{OEIS link|id=A000217}} |- | align="right" | [[quadrilateral|4]] | [[Square number|Square]] | align="center" | {{math|{{sfrac|1|2}}(2''n''<sup>2</sup> β 0''n'') <br> {{=}} ''n''<sup>2</sup>}} | align="right" | 1 | align="right" | 4 | align="right" | 9 | align="right" | 16 | align="right" | 25 | align="right" | 36 | align="right" | 49 | align="right" | 64 | align="right" | 81 | align="right" | 100 | align="center" | {{sfrac|{{pi}}<sup>2</sup>|6}}<ref name="siam_07-003s" /> | {{OEIS link|id=A000290}} |- | align="right" | [[pentagon|5]] | [[Pentagonal number|Pentagonal]] | align="center" | {{math|{{sfrac|1|2}}(3''n''<sup>2</sup> β ''n'')}} | align="right" | 1 | align="right" | 5 | align="right" | 12 | align="right" | 22 | align="right" | 35 | align="right" | 51 | align="right" | 70 | align="right" | 92 | align="right" | 117 | align="right" | 145 | align="center" | {{math|3 [[natural logarithm|ln]] 3 β {{sfrac|{{pi}}{{sqrt|3}}|3}}}}<ref name="siam_07-003s" /> | {{OEIS link|id=A000326}} |- | align="right" | [[hexagon|6]] | [[Hexagonal number|Hexagonal]] | align="center" | {{math|{{sfrac|1|2}}(4''n''<sup>2</sup> β 2''n'') <br> {{=}} 2''n''<sup>2</sup> - ''n''}} | align="right" | 1 | align="right" | 6 | align="right" | 15 | align="right" | 28 | align="right" | 45 | align="right" | 66 | align="right" | 91 | align="right" | 120 | align="right" | 153 | align="right" | 190 | align="center" | {{math|2 ln 2}}<ref name="siam_07-003s" /> | {{OEIS link|id=A000384}} |- | align="right" | [[heptagon|7]] | [[Heptagonal number|Heptagonal]] | align="center" | {{math|{{sfrac|1|2}}(5''n''<sup>2</sup> β 3''n'')}} | align="right" | 1 | align="right" | 7 | align="right" | 18 | align="right" | 34 | align="right" | 55 | align="right" | 81 | align="right" | 112 | align="right" | 148 | align="right" | 189 | align="right" | 235 | align="center" | <math>\begin{matrix} \tfrac{2}{3}\ln 5 \\ +\tfrac{{1}+\sqrt{5}}{3}\ln\tfrac\sqrt{10-2\sqrt{5}}{2} \\ +\tfrac{{1}-\sqrt{5}}{3}\ln\tfrac\sqrt{10+2\sqrt{5}}{2} \\ +\tfrac{\pi\sqrt{25-10\sqrt{5}}}{15} \end{matrix}</math><ref name="siam_07-003s" /> | {{OEIS link|id=A000566}} |- | align="right" | [[octagon|8]] | [[Octagonal number|Octagonal]] | align="center" | {{math|{{sfrac|1|2}}(6''n''<sup>2</sup> β 4''n'') <br> {{=}} 3''n''<sup>2</sup> - 2''n''}} | align="right" | 1 | align="right" | 8 | align="right" | 21 | align="right" | 40 | align="right" | 65 | align="right" | 96 | align="right" | 133 | align="right" | 176 | align="right" | 225 | align="right" | 280 | align="center" | {{math|{{sfrac|3|4}} ln 3 + {{sfrac|{{pi}}{{sqrt|3}}|12}}}}<ref name="siam_07-003s" /> | {{OEIS link|id=A000567}} |- | align="right" | [[nonagon|9]] | [[Nonagonal number|Nonagonal]] | align="center" | {{math|{{sfrac|1|2}}(7''n''<sup>2</sup> β 5''n'')}} | align="right" | 1 | align="right" | 9 | align="right" | 24 | align="right" | 46 | align="right" | 75 | align="right" | 111 | align="right" | 154 | align="right" | 204 | align="right" | 261 | align="right" | 325 | align="center" | | {{OEIS link|id=A001106}} |- | align="right" | [[decagon|10]] | [[Decagonal number|Decagonal]] | align="center" | {{math|{{sfrac|1|2}}(8''n''<sup>2</sup> β 6''n'') <br> {{=}} 4''n''<sup>2</sup> - 3''n''}} | align="right" | 1 | align="right" | 10 | align="right" | 27 | align="right" | 52 | align="right" | 85 | align="right" | 126 | align="right" | 175 | align="right" | 232 | align="right" | 297 | align="right" | 370 | align="center" | {{math|ln 2 + {{sfrac|{{pi}}|6}}}} | {{OEIS link|id=A001107}} |- | align="right" | [[hendecagon|11]] | Hendecagonal | align="center" | {{math|{{sfrac|1|2}}(9''n''<sup>2</sup> β 7''n'')}} | align="right" | 1 | align="right" | 11 | align="right" | 30 | align="right" | 58 | align="right" | 95 | align="right" | 141 | align="right" | 196 | align="right" | 260 | align="right" | 333 | align="right" | 415 | align="center" | | {{OEIS link|id=A051682}} |- | align="right" | [[dodecagon|12]] | [[Dodecagonal number|Dodecagonal]] | align="center" | {{math|{{sfrac|1|2}}(10''n''<sup>2</sup> β 8''n'')}} | align="right" | 1 | align="right" | 12 | align="right" | 33 | align="right" | 64 | align="right" | 105 | align="right" | 156 | align="right" | 217 | align="right" | 288 | align="right" | 369 | align="right" | 460 | align="center" | | {{OEIS link|id=A051624}} |- | align="right" | [[tridecagon|13]] | Tridecagonal | align="center" | {{math|{{sfrac|1|2}}(11''n''<sup>2</sup> β 9''n'')}} | align="right" | 1 | align="right" | 13 | align="right" | 36 | align="right" | 70 | align="right" | 115 | align="right" | 171 | align="right" | 238 | align="right" | 316 | align="right" | 405 | align="right" | 505 | align="center" | | {{OEIS link|id=A051865}} |- | align="right" | [[tetradecagon|14]] | Tetradecagonal | align="center" | {{math|{{sfrac|1|2}}(12''n''<sup>2</sup> β 10''n'')}} | align="right" | 1 | align="right" | 14 | align="right" | 39 | align="right" | 76 | align="right" | 125 | align="right" | 186 | align="right" | 259 | align="right" | 344 | align="right" | 441 | align="right" | 550 | align="center" | {{math|{{sfrac|2|5}} ln 2 + {{sfrac|3|10}} ln 3 + {{sfrac|{{pi}}{{sqrt|3}}|10}}}} | {{OEIS link|id=A051866}} |- | align="right" | [[pentadecagon|15]] | Pentadecagonal | align="center" | {{math|{{sfrac|1|2}}(13''n''<sup>2</sup> β 11''n'')}} | align="right" | 1 | align="right" | 15 | align="right" | 42 | align="right" | 82 | align="right" | 135 | align="right" | 201 | align="right" | 280 | align="right" | 372 | align="right" | 477 | align="right" | 595 | align="center" | | {{OEIS link|id=A051867}} |- | align="right" | [[hexadecagon|16]] | Hexadecagonal | align="center" | {{math|{{sfrac|1|2}}(14''n''<sup>2</sup> β 12''n'')}} | align="right" | 1 | align="right" | 16 | align="right" | 45 | align="right" | 88 | align="right" | 145 | align="right" | 216 | align="right" | 301 | align="right" | 400 | align="right" | 513 | align="right" | 640 | align="center" | | {{OEIS link|id=A051868}} |- | align="right" | [[heptadecagon|17]] | Heptadecagonal | align="center" | {{math|{{sfrac|1|2}}(15''n''<sup>2</sup> β 13''n'')}} | align="right" | 1 | align="right" | 17 | align="right" | 48 | align="right" | 94 | align="right" | 155 | align="right" | 231 | align="right" | 322 | align="right" | 428 | align="right" | 549 | align="right" | 685 | align="center" | | {{OEIS link|id=A051869}} |- | align="right" | [[octadecagon|18]] | Octadecagonal | align="center" | {{math|{{sfrac|1|2}}(16''n''<sup>2</sup> β 14''n'')}} | align="right" | 1 | align="right" | 18 | align="right" | 51 | align="right" | 100 | align="right" | 165 | align="right" | 246 | align="right" | 343 | align="right" | 456 | align="right" | 585 | align="right" | 730 | align="center" | {{math|{{sfrac|4|7}} ln 2 β {{sfrac|{{sqrt|2}}|14}} ln (3 β 2{{sqrt|2}})}} {{math|+ {{sfrac|{{pi}}(1 + {{sqrt|2}})|14}}}} | {{OEIS link|id=A051870}} |- | align="right" | [[enneadecagon|19]] | Enneadecagonal | align="center" | {{math|{{sfrac|1|2}}(17''n''<sup>2</sup> β 15''n'')}} | align="right" | 1 | align="right" | 19 | align="right" | 54 | align="right" | 106 | align="right" | 175 | align="right" | 261 | align="right" | 364 | align="right" | 484 | align="right" | 621 | align="right" | 775 | align="center" | | {{OEIS link|id=A051871}} |- | align="right" | [[icosagon|20]] | Icosagonal | align="center" | {{math|{{sfrac|1|2}}(18''n''<sup>2</sup> β 16''n'')}} | align="right" | 1 | align="right" | 20 | align="right" | 57 | align="right" | 112 | align="right" | 185 | align="right" | 276 | align="right" | 385 | align="right" | 512 | align="right" | 657 | align="right" | 820 | align="center" | | {{OEIS link|id=A051872}} |- | align="right" | [[icosihenagon|21]] | Icosihenagonal | align="center" | {{math|{{sfrac|1|2}}(19''n''<sup>2</sup> β 17''n'')}} | align="right" | 1 | align="right" | 21 | align="right" | 60 | align="right" | 118 | align="right" | 195 | align="right" | 291 | align="right" | 406 | align="right" | 540 | align="right" | 693 | align="right" | 865 | align="center" | | {{OEIS link|id=A051873}} |- | align="right" | [[icosidigon|22]] | Icosidigonal | align="center" | {{math|{{sfrac|1|2}}(20''n''<sup>2</sup> β 18''n'')}} | align="right" | 1 | align="right" | 22 | align="right" | 63 | align="right" | 124 | align="right" | 205 | align="right" | 306 | align="right" | 427 | align="right" | 568 | align="right" | 729 | align="right" | 910 | align="center" | | {{OEIS link|id=A051874}} |- | align="right" | [[icositrigon|23]] | Icositrigonal | align="center" | {{math|{{sfrac|1|2}}(21''n''<sup>2</sup> β 19''n'')}} | align="right" | 1 | align="right" | 23 | align="right" | 66 | align="right" | 130 | align="right" | 215 | align="right" | 321 | align="right" | 448 | align="right" | 596 | align="right" | 765 | align="right" | 955 | align="center" | | {{OEIS link|id=A051875}} |- | align="right" | [[icositetragon|24]] | Icositetragonal | align="center" | {{math|{{sfrac|1|2}}(22''n''<sup>2</sup> β 20''n'')}} | align="right" | 1 | align="right" | 24 | align="right" | 69 | align="right" | 136 | align="right" | 225 | align="right" | 336 | align="right" | 469 | align="right" | 624 | align="right" | 801 | align="right" | 1000 | align="center" | | {{OEIS link|id=A051876}} |- | align="right" | ... | ... | align="center" | ... | align="right" | ... | align="right" | ... | align="right" | ... | align="right" | ... | align="right" | ... | align="right" | ... | align="right" | ... | align="right" | ... | align="right" | ... | align="right" | ... | align="center" | ... | ... |- | align="right" | [[myriagon|10000]] | Myriagonal | align="center" | {{math|{{sfrac|1|2}}(9998''n''<sup>2</sup> β 9996''n'')}} | align="right" | 1 | align="right" | 10000 | align="right" | 29997 | align="right" | 59992 | align="right" | 99985 | align="right" | 149976 | align="right" | 209965 | align="right" | 279952 | align="right" | 359937 | align="right" | 449920 | align="center" | | {{OEIS link|id=A167149}} |} The [[On-Line Encyclopedia of Integer Sequences]] eschews terms using Greek prefixes (e.g., "octagonal") in favor of terms using numerals (i.e., "8-gonal"). A property of this table can be expressed by the following identity (see {{OEIS link|id=A086270}}): :<math>2\,P(s,n) = P(s+k,n) + P(s-k,n),</math> with :<math>k = 0, 1, 2, 3, ..., s-3.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)