Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Polylogarithm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Dilogarithm== {{Main|Dilogarithm}} The dilogarithm is the polylogarithm of order ''s'' = 2. An alternate integral expression of the dilogarithm for arbitrary complex argument ''z'' is {{harv|Abramowitz|Stegun|1972|loc=Β§ 27.7}}: <math display="block">\operatorname{Li}_2 (z) = -\int_0^z{\ln (1-t) \over t} dt = -\int_0^1{\ln (1-zt) \over t} dt.</math> A source of confusion is that some [[computer algebra system]]s define the dilogarithm as dilog(''z'') = Li<sub>2</sub>(1β''z''). In the case of real ''z'' β₯ 1 the first integral expression for the dilogarithm can be written as <math display="block">\operatorname{Li}_2(z) = \frac{\pi^2}{6} - \int_1^z{\ln(t-1) \over t} dt - i\pi \ln z</math> from which expanding ln(''t''β1) and integrating term by term we obtain <math display="block">\operatorname{Li}_2(z) = \frac{\pi^2}{3} - \frac{1}{2}(\ln z)^2 - \sum_{k=1}^\infty {1 \over k^2 z^k} - i\pi \ln z \qquad (z \ge 1).</math> The ''[[Niels Henrik Abel|Abel]] identity'' for the dilogarithm is given by {{harv|Abel|1881}} <math display="block">\operatorname{Li}_2 \left( \frac{x}{1-y} \right) + \operatorname{Li}_2 \left( \frac{y}{1-x} \right) - \operatorname{Li}_2 \left(\frac{xy}{(1-x)(1-y)} \right) = \operatorname{Li}_2(x) + \operatorname{Li}_2(y) + \ln(1-x) \ln(1-y)</math> <math display="block">(\operatorname{Re}(x) \le \tfrac{1}{2} \wedge \operatorname{Re}(y) \le \tfrac{1}{2} \vee \operatorname{Im}(x) > 0 \wedge \operatorname{Im}(y) > 0 \vee \operatorname{Im}(x) < 0 \wedge \operatorname{Im}(y) < 0 \vee \ldots).</math> This is immediately seen to hold for either ''x'' = 0 or ''y'' = 0, and for general arguments is then easily verified by differentiation β/β''x'' β/β''y''. For ''y'' = 1β''x'' the identity reduces to [[Leonhard Euler|Euler]]'s ''reflection formula'' <math display="block">\operatorname{Li}_2 \left(x \right) + \operatorname{Li}_2 \left(1-x\right) = \frac{1}{6} \pi^2 - \ln(x)\ln(1-x) ,</math> where Li<sub>2</sub>(1) = ΞΆ(2) = <sup>1</sup>β<sub>6</sub> ''Ο''<sup>2</sup> has been used and ''x'' may take any complex value. In terms of the new variables ''u'' = ''x''/(1β''y''), ''v'' = ''y''/(1β''x'') the Abel identity reads <math display="block">\operatorname{Li}_2(u) + \operatorname{Li}_2(v) - \operatorname{Li}_2(uv) = \operatorname{Li}_2 \left( \frac{u-uv}{1-uv} \right) + \operatorname{Li}_2 \left( \frac{v-uv}{1-uv} \right) + \ln \left( \frac{1-u}{1-uv} \right) \ln\left( \frac{1-v}{1-uv} \right),</math> which corresponds to the ''pentagon identity'' given in {{harv|Rogers|1907}}. From the Abel identity for ''x'' = ''y'' = 1β''z'' and the square relationship we have [[John Landen|Landen]]'s identity <math display="block">\operatorname{Li}_2(1-z) + \operatorname{Li}_2 \left( 1-\frac{1}{z} \right) = - \frac{1}{2} (\ln z)^2 \qquad (z \not \in ~]-\infty; 0]) ,</math> and applying the reflection formula to each dilogarithm we find the inversion formula <math display="block">\operatorname{Li}_2(z) + \operatorname{Li}_2(1/z) = -\tfrac{1}{6} \pi^2 - \tfrac{1}{2} [\ln(-z)]^2 \qquad (z \not \in [0; 1[) ,</math> and for real ''z'' β₯ 1 also <math display="block">\operatorname{Li}_2(z) + \operatorname{Li}_2(1/z) = \tfrac{1}{3} \pi^2 - \tfrac{1}{2} (\ln z)^2 - i\pi \ln z .</math> Known closed-form evaluations of the dilogarithm at special arguments are collected in the table below. Arguments in the first column are related by reflection ''x'' β 1β''x'' or inversion ''x'' β <sup>1</sup>β<sub>''x''</sub> to either ''x'' = 0 or ''x'' = β1; arguments in the third column are all interrelated by these operations. {{harvtxt|Maximon|2003}} discusses the 17th to 19th century references. The reflection formula was already published by Landen in 1760, prior to its appearance in a 1768 book by Euler {{harv|Maximon|2003|loc=Β§ 10}}; an equivalent to Abel's identity was already published by [[William Spence (mathematician)|Spence]] in 1809, before Abel wrote his manuscript in 1826 {{harv|Zagier|1989|loc=Β§ 2}}. The designation ''bilogarithmische Function'' was introduced by [[:sv:Carl Johan Hill|Carl Johan Danielsson Hill]] (professor in Lund, Sweden) in 1828 {{harv|Maximon|2003|loc=Β§ 10}}. {{harvs | txt | author-link= Don Zagier | first= Don | last= Zagier | year= 1989}} has remarked that the dilogarithm is the only mathematical function possessing a sense of humor. :{| class="wikitable" style="text-align: center;" |+ '''Special values of the dilogarithm''' |- ! <math>x </math> ! <math>\operatorname{Li}_2(x) </math> ! <math>x </math> ! <math>\operatorname{Li}_2(x) </math> |- | <math>-1 </math> | <math>-\tfrac {1}{12} \pi^2 </math> | <math>-\phi </math> | <math>-\tfrac {1}{10} \pi^2 - \ln^2 \phi </math> |- | <math>0 </math> | <math>0 </math> | <math>-1 / \phi </math> | <math>-\tfrac {1}{15} \pi^2 + \tfrac {1}{2} \ln^2 \phi </math> |- | <math>\tfrac {1}{2} </math> | <math>\tfrac {1}{12} \pi^2 - \tfrac {1}{2} \ln^2 2 </math> | <math>1 / \phi^2 </math> | <math>\tfrac {1}{15} \pi^2 - \ln^2 \phi </math> |- | <math>1 </math> | <math>\tfrac {1}{6} \pi^2 </math> | <math>1 / \phi </math> | <math>\tfrac {1}{10} \pi^2 - \ln^2 \phi </math> |- | <math>2 </math> | <math>\tfrac {1}{4} \pi^2 - \pi i \ln 2 </math> | <math>\phi </math> | <math>\tfrac {11}{15} \pi^2 + \tfrac {1}{2} \ln^2(-1 / \phi) </math> |- | | | <math>\phi^2 </math> | <math>-\tfrac {11}{15} \pi^2 - \ln^2(-\phi) </math> |- |} :Here <math>\phi = \tfrac{1}{2} (\sqrt{5}+1)</math> denotes the [[golden ratio]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)