Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Power series
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Multiplication and division === With the same definitions for <math>f(x)</math> and <math>g(x)</math>, the power series of the product and quotient of the functions can be obtained as follows: <math display="block">\begin{align} f(x)g(x) &= \biggl(\sum_{n=0}^\infty a_n (x-c)^n\biggr)\biggl(\sum_{n=0}^\infty b_n (x - c)^n\biggr) \\ &= \sum_{i=0}^\infty \sum_{j=0}^\infty a_i b_j (x - c)^{i+j} \\ &= \sum_{n=0}^\infty \biggl(\sum_{i=0}^n a_i b_{n-i}\biggr) (x - c)^n. \end{align}</math> The sequence <math display="inline">m_n = \sum_{i=0}^n a_i b_{n-i}</math> is known as the [[Cauchy product]] of the sequences <math>a_n</math> and {{nowrap|<math>b_n</math>.}} For division, if one defines the sequence <math>d_n</math> by <math display="block">\frac{f(x)}{g(x)} = \frac{\sum_{n=0}^\infty a_n (x - c)^n}{\sum_{n=0}^\infty b_n (x - c)^n} = \sum_{n=0}^\infty d_n (x - c)^n</math> then <math display="block">f(x) = \biggl(\sum_{n=0}^\infty b_n (x - c)^n\biggr)\biggl(\sum_{n=0}^\infty d_n (x - c)^n\biggr)</math> and one can solve recursively for the terms <math>d_n</math> by comparing coefficients. Solving the corresponding equations yields the formulae based on [[determinant]]s of certain matrices of the coefficients of <math>f(x)</math> and <math>g(x)</math> <math display="block">d_0=\frac{a_0}{b_0}</math> <math display="block">d_n=\frac{1}{b_0^{n+1}} \begin{vmatrix} a_n &b_1 &b_2 &\cdots&b_n \\ a_{n-1}&b_0 &b_1 &\cdots&b_{n-1}\\ a_{n-2}&0 &b_0 &\cdots&b_{n-2}\\ \vdots &\vdots&\vdots&\ddots&\vdots \\ a_0 &0 &0 &\cdots&b_0\end{vmatrix}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)