Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Quadratic field
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Orders of quadratic number fields of small discriminant== The following table shows some [[order (ring theory)|orders]] of small discriminant of quadratic fields. The ''maximal order'' of an algebraic number field is its [[ring of integers]], and the discriminant of the maximal order is the discriminant of the field. The discriminant of a non-maximal order is the product of the discriminant of the corresponding maximal order by the square of the determinant of the matrix that expresses a basis of the non-maximal order over a basis of the maximal order. All these discriminants may be defined by the formula of {{slink|Discriminant of an algebraic number field|Definition}}. For real quadratic integer rings, the [[Ideal class group#Properties|ideal class number]], which measures the failure of unique factorization, is given in [https://oeis.org/A003649 OEIS A003649]; for the imaginary case, they are given in [https://oeis.org/A000924 OEIS A000924]. {| class="wikitable" |- ! Order ! Discriminant ! Class number ! Units ! Comments |- | <math>\mathbf{Z}\left[\sqrt{-5}\right]</math> | <math>-20</math> | <math>2</math> | <math>\pm 1</math> | Ideal classes <math>(1)</math>, <math>(2,1+\sqrt{-5})</math> |- | <math>\mathbf{Z}\left[(1+\sqrt{-19})/2\right]</math> | <math>-19</math> | <math>1</math> | <math>\pm 1</math> | [[Principal ideal domain]], not [[Euclidean domain|Euclidean]] |- | <math>\mathbf{Z}\left[2\sqrt{-1}\right]</math> | <math>-16</math> | <math>1</math> | <math>\pm 1</math> |Non-maximal order |- | <math>\mathbf{Z}\left[(1+\sqrt{-15})/2\right]</math> | <math>-15</math> | <math>2</math> | <math>\pm 1</math> |Ideal classes <math>(1)</math>, <math>(1,(1+\sqrt{-15})/2)</math> |- | <math>\mathbf{Z}\left[\sqrt{-3}\right]</math> | <math>-12</math> | <math>1</math> | <math>\pm 1</math> |Non-maximal order |- | <math>\mathbf{Z}\left[(1+\sqrt{-11})/2\right]</math> | <math>-11</math> | <math>1</math> | <math>\pm 1</math> | Euclidean |- | <math>\mathbf{Z}\left[\sqrt{-2}\right]</math> | <math>-8</math> | <math>1</math> | <math>\pm 1</math> | Euclidean |- | <math>\mathbf{Z}\left[(1+\sqrt{-7})/2\right]</math> | <math>-7</math> | <math>1</math> | <math>\pm 1</math> |[[Kleinian integers]] |- | <math>\mathbf{Z}\left[\sqrt{-1}\right]</math> | <math>-4</math> | <math>1</math> | <math>\pm 1,\pm i</math> (cyclic of order <math>4</math>) |[[Gaussian integers]] |- | <math>\mathbf{Z}\left[(1+\sqrt{-3})/2\right]</math> | <math>-3</math> | <math>1</math> | <math>\pm 1,(\pm 1 \pm \sqrt{-3})/2</math>. |[[Eisenstein integers]] |- | <math>\mathbf{Z}\left[ \sqrt{-21}\right]</math> | <math>-84</math> | <math>4</math> | |Class group non-cyclic: <math>(\mathbf{Z}/2\mathbf{Z})^2</math> |- | <math>\mathbf{Z}\left[ (1+\sqrt{5})/2\right]</math> | <math>5</math> | <math>1</math> | <math>\pm((1+\sqrt{5})/2)^n</math> (norm <math>(-1)^n</math>) | |- | <math>\mathbf{Z}\left[ \sqrt{2}\right]</math> | <math>8</math> | <math>1</math> | <math>\pm(1+\sqrt{2})^n</math> (norm <math>(-1)^n</math>) | |- | <math>\mathbf{Z}\left[ \sqrt{3}\right]</math> | <math>12</math> | <math>1</math> | <math>\pm(2+\sqrt{3})^n</math> (norm <math>1</math>) | |- | <math>\mathbf{Z}\left[ (1+\sqrt{13})/2\right]</math> | <math>13</math> | <math>1</math> | <math>\pm((3+\sqrt{13})/2)^n</math> (norm <math>(-1)^n</math>) | |- | <math>\mathbf{Z}\left[ (1+\sqrt{17})/2\right]</math> | <math>17</math> | <math>1</math> | <math>\pm(4+\sqrt{17})^n</math> (norm <math>(-1)^n</math>) | |- | <math>\mathbf{Z}\left[\sqrt{5}\right]</math> | <math>20</math> | <math>1</math> | <math>\pm(\sqrt{5}+2)^n</math> (norm <math>(-1)^n</math>) |Non-maximal order |} Some of these examples are listed in Artin, ''Algebra'' (2nd ed.), Β§13.8.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)