Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Quantum channel
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Observable === An observable associates a numerical value <math>f_i \in \mathbb{C}</math> to a quantum mechanical ''effect'' <math>F_i</math>. <math>F_i</math>'s are assumed to be positive operators acting on appropriate state space and <math display="inline">\sum_i F_i = I</math>. (Such a collection is called a [[POVM]].<ref>{{cite book|first=Asher |last=Peres |author-link=Asher Peres |title=Quantum Theory: Concepts and Methods |title-link=Quantum Theory: Concepts and Methods |year=1993 |publisher=[[Kluwer]] |isbn=0-7923-2549-4 |page=283}}</ref>{{sfn|Bengtsson|Życzkowski|2017|p=271}}) In the Heisenberg picture, the corresponding ''observable map'' <math>\Psi</math> maps a classical observable :<math>f = \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix} \in C(X)</math> to the quantum mechanical one :<math>\; \Psi (f) = \sum_i f_i F_i.</math> In other words, one [[Naimark's dilation theorem|integrates ''f'' against the POVM]] to obtain the quantum mechanical observable. It can be easily checked that <math>\Psi</math> is CP and unital. The corresponding Schrödinger map <math>\Psi^*</math> takes density matrices to classical states:{{sfn|Wilde|2017|at=§4.6.6}} :<math> \Psi (\rho) = \begin{bmatrix} \langle F_1, \rho \rangle \\ \vdots \\ \langle F_n, \rho \rangle \end{bmatrix}, </math> where the inner product is the Hilbert–Schmidt inner product. Furthermore, viewing states as normalized [[density matrix#C*-algebraic formulation of states|functionals]], and invoking the [[Riesz representation theorem]], we can put :<math> \Psi (\rho) = \begin{bmatrix} \rho (F_1) \\ \vdots \\ \rho (F_n) \end{bmatrix}. </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)