Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Recommender system
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Session-based recommender systems === These recommender systems use the interactions of a user within a session<ref name="a">{{cite arXiv|last1=Hidasi|first1=Balázs|last2=Karatzoglou|first2=Alexandros|last3=Baltrunas|first3=Linas|last4=Tikk|first4=Domonkos|date=2016-03-29|title=Session-based Recommendations with Recurrent Neural Networks|class=cs.LG|eprint=1511.06939}}</ref> to generate recommendations. Session-based recommender systems are used at YouTube<ref name="yt">{{cite arXiv|last1=Chen|first1=Minmin|last2=Beutel|first2=Alex|last3=Covington|first3=Paul|last4=Jain|first4=Sagar|last5=Belletti|first5=Francois|last6=Chi|first6=Ed|title=Top-K Off-Policy Correction for a REINFORCE Recommender System|year=2018|class=cs.LG|eprint=1812.02353}}</ref> and Amazon.<ref name="amzn">{{Cite book|last1=Yifei|first1=Ma|last2=Narayanaswamy|first2=Balakrishnan|last3=Haibin|first3=Lin|last4=Hao|first4=Ding|title=Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining |chapter=Temporal-Contextual Recommendation in Real-Time |year=2020|pages=2291–2299|publisher=Association for Computing Machinery|doi=10.1145/3394486.3403278|isbn=978-1-4503-7998-4|s2cid=221191348|doi-access=free}}</ref> These are particularly useful when history (such as past clicks, purchases) of a user is not available or not relevant in the current user session. Domains where session-based recommendations are particularly relevant include video, e-commerce, travel, music and more. Most instances of session-based recommender systems rely on the sequence of recent interactions within a session without requiring any additional details (historical, demographic) of the user. Techniques for session-based recommendations are mainly based on generative sequential models such as [[Recurrent neural network|recurrent neural networks]],<ref name="a" /><ref>{{Cite book|last1=Hidasi|first1=Balázs|last2=Karatzoglou|first2=Alexandros|title=Proceedings of the 27th ACM International Conference on Information and Knowledge Management |chapter=Recurrent Neural Networks with Top-k Gains for Session-based Recommendations |date=2018-10-17|chapter-url=https://doi.org/10.1145/3269206.3271761|series=CIKM '18|location=Torino, Italy|publisher=Association for Computing Machinery|pages=843–852|doi=10.1145/3269206.3271761|arxiv=1706.03847|isbn=978-1-4503-6014-2|s2cid=1159769}}</ref> [[Transformer (deep learning architecture)|transformers]],<ref>{{cite arXiv|last1=Kang|first1=Wang-Cheng|last2=McAuley|first2=Julian|title=Self-Attentive Sequential Recommendation|year=2018|class=cs.IR|eprint=1808.09781}}</ref> and other deep-learning-based approaches.<ref>{{Cite book|last1=Li|first1=Jing|last2=Ren|first2=Pengjie|last3=Chen|first3=Zhumin|last4=Ren|first4=Zhaochun|last5=Lian|first5=Tao|last6=Ma|first6=Jun|title=Proceedings of the 2017 ACM on Conference on Information and Knowledge Management |chapter=Neural Attentive Session-based Recommendation |date=2017-11-06|chapter-url=https://doi.org/10.1145/3132847.3132926|series=CIKM '17|location=Singapore, Singapore|publisher=Association for Computing Machinery|pages=1419–1428|doi=10.1145/3132847.3132926|arxiv=1711.04725|isbn=978-1-4503-4918-5|s2cid=21066930}}</ref><ref>{{Cite book|last1=Liu|first1=Qiao|last2=Zeng|first2=Yifu|last3=Mokhosi|first3=Refuoe|last4=Zhang|first4=Haibin|title=Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining |chapter=STAMP |date=2018-07-19|chapter-url=https://doi.org/10.1145/3219819.3219950|series=KDD '18|location=London, United Kingdom|publisher=Association for Computing Machinery|pages=1831–1839|doi=10.1145/3219819.3219950|isbn=978-1-4503-5552-0|s2cid=50775765}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)