Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Rectangular function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Dirac delta function == The rectangle function can be used to represent the [[Dirac delta function]] <math>\delta (x)</math>.<ref name=":0">{{Cite book |last1=Khare |first1=Kedar |title=Fourier Optics and Computational Imaging |last2=Butola |first2=Mansi |last3=Rajora |first3=Sunaina |publisher=Springer |year=2023 |isbn=978-3-031-18353-9 |edition=2nd |pages=15β16 |chapter=Chapter 2.4 Sampling by Averaging, Distributions and Delta Function |doi=10.1007/978-3-031-18353-9}}</ref> Specifically,<math display="block">\delta (x) = \lim_{a \to 0} \frac{1}{a}\operatorname{rect}\left(\frac{x}{a}\right).</math>For a function <math>g(x)</math>, its average over the width ''<math>a</math>'' around 0 in the function domain is calculated as, <math display="block">g_{avg}(0) = \frac{1}{a} \int\limits_{- \infty}^{\infty} dx\ g(x) \operatorname{rect}\left(\frac{x}{a}\right).</math> To obtain <math>g(0)</math>, the following limit is applied, <math display="block">g(0) = \lim_{a \to 0} \frac{1}{a} \int\limits_{- \infty}^{\infty} dx\ g(x) \operatorname{rect}\left(\frac{x}{a}\right)</math> and this can be written in terms of the Dirac delta function as, <math display="block">g(0) = \int\limits_{- \infty}^{\infty} dx\ g(x) \delta (x).</math>The Fourier transform of the Dirac delta function <math>\delta (t)</math> is <math display="block">\delta (f) = \int_{-\infty}^\infty \delta (t) \cdot e^{-i 2\pi f t} \, dt = \lim_{a \to 0} \frac{1}{a} \int_{-\infty}^\infty \operatorname{rect}\left(\frac{t}{a}\right)\cdot e^{-i 2\pi f t} \, dt = \lim_{a \to 0} \operatorname{sinc}{(a f)}.</math> where the [[sinc function]] here is the normalized sinc function. Because the first zero of the sinc function is at <math>f = 1 / a</math> and <math>a</math> goes to infinity, the Fourier transform of <math>\delta (t)</math> is <math display="block">\delta (f) = 1,</math> means that the frequency spectrum of the Dirac delta function is infinitely broad. As a pulse is shorten in time, it is larger in spectrum.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)