Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Redshift
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Summary table === Several important special-case formulae for redshift in certain special spacetime geometries are summarized in the following table. In all cases the magnitude of the shift (the value of {{math|''z''}}) is independent of the wavelength.<ref name="basicastronomy">See Binney and Merrifeld (1998), Carroll and Ostlie (1996), Kutner (2003) for applications in astronomy.</ref> {| class="wikitable" style="max-width:1000px;" |+ Redshift summary ! Redshift type !! Geometry !! Formulae<ref>Where z = redshift; v<sub>||</sub> = [[velocity]] parallel to line-of-sight (positive if moving away from receiver); c = [[speed of light]]; ''γ'' = [[Lorentz factor]]; ''a'' = [[scale factor (Universe)|scale factor]]; G = [[gravitational constant]]; M = object [[mass]]; r = [[Schwarzschild coordinates|radial Schwarzschild coordinate]], g<sub>tt</sub> = t,t component of the [[metric tensor]]</ref> |- | [[Relativistic Doppler effect|Relativistic Doppler]]|| [[Minkowski space]]<br />(flat spacetime) || For motion completely in the radial or<br />line-of-sight direction: :<big><math>1 + z = \gamma \left(1 + \frac{v_{\parallel}}{c}\right) = \sqrt{\frac{1+\frac{v_{\parallel}}{c}}{1-\frac{v_{\parallel}}{c}}}</math></big> :<math>z \approx \frac{v_{\parallel}}{c}</math> for small <math>v_{\parallel}</math> <br /> For motion completely in the transverse direction: :<math>1 + z=\frac{1}{\sqrt{1-\frac{v_\perp^2}{c^2}}}</math> :<math>z \approx \frac{1}{2} \left( \frac{v_{\perp}}{c} \right)^2</math> for small <math>v_{\perp}</math> |- | [[Cosmological redshift]]|| [[Friedmann–Lemaître–Robertson–Walker metric|FLRW spacetime]]<br />(expanding Big Bang universe) || :<math>1 + z = \frac{a_{\mathrm{now}}}{a_{\mathrm{then}}}</math> [[Hubble's law]]: :<math>z \approx \frac{H_0 D}{c}</math> for <math>D \ll \frac{c}{H_0}</math> |- | [[Gravitational redshift]]|| Any [[stationary spacetime]] || :<math>1 + z = \sqrt{\frac{g_{tt}(\text{receiver})}{g_{tt}(\text{source})}}</math> For the [[Schwarzschild geometry]]: :<big><math>1 + z = \sqrt{\frac{1 - \frac{r_S}{r_{\text{receiver}}}}{1 - \frac{r_S}{r_{\text{source} }}}} = \sqrt{\frac{1 - \frac{2GM}{ c^2 r_{\text{receiver}}}}{1 - \frac{2GM}{ c^2 r_{\text{source} }}}} </math></big> :<big><math>z \approx \frac{1}{2} \left( \frac{r_S}{r_\text{source}} - \frac{r_S}{r_\text{receiver}} \right)</math> for <math>r \gg r_S</math></big> In terms of [[escape velocity]]: :<math>z \approx \frac{1}{2} \left(\frac{v_\text{e}}{c}\right)_\text{source}^2 - \frac{1}{2} \left(\frac{v_\text{e}}{c}\right)_\text{receiver}^2 </math> for <math>v_\text{e} \ll c</math> |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)