Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Relativistic wave equations
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Constructing RWEs == === Using 4-vectors and the energy–momentum relation === {{main|Four vector|Energy–momentum relation}} Start with the standard [[special relativity]] (SR) 4-vectors * [[4-position]] <math>X^\mu = \mathbf{X} = (ct,\vec{\mathbf{x}})</math> * [[4-velocity]] <math>U^\mu = \mathbf{U} = \gamma(c,\vec{\mathbf{u}})</math> * [[4-momentum]] <math>P^\mu = \mathbf{P} = \left(\frac{E}{c},\vec{\mathbf{p}}\right)</math> * [[4-wavevector]] <math>K^\mu = \mathbf{K} = \left(\frac{\omega}{c},\vec{\mathbf{k}}\right)</math> * [[4-gradient]] <math>\partial^\mu = \mathbf{\partial} = \left(\frac{\partial_t}{c},-\vec{\mathbf{\nabla}}\right)</math> Note that each 4-vector is related to another by a [[Lorentz scalar]]: * <math>\mathbf{U} = \frac{d}{d\tau} \mathbf{X}</math>, where <math>\tau</math> is the [[proper time]] * <math>\mathbf{P} = m_0 \mathbf{U}</math>, where <math>m_0</math> is the [[rest mass]] * <math>\mathbf{K} = (1/\hbar) \mathbf{P}</math>, which is the [[4-vector]] version of the [[Planck–Einstein relation]] & the [[de Broglie]] [[matter wave]] relation * <math>\mathbf{\partial} = -i \mathbf{K}</math>, which is the [[4-gradient]] version of [[complex-valued]] [[plane waves]] Now, just apply the standard Lorentz scalar product rule to each one: * <math>\mathbf{U} \cdot \mathbf{U} = (c)^2</math> * <math>\mathbf{P} \cdot \mathbf{P} = (m_0 c)^2</math> * <math>\mathbf{K} \cdot \mathbf{K} = \left(\frac{m_0 c}{\hbar}\right)^2</math> * <math>\mathbf{\partial} \cdot \mathbf{\partial} = \left(\frac{-i m_0 c}{\hbar}\right)^2 = -\left(\frac{m_0 c}{\hbar}\right)^2</math> The last equation is a fundamental quantum relation. When applied to a Lorentz scalar field <math>\psi</math>, one gets the Klein–Gordon equation, the most basic of the quantum relativistic wave equations. * <math>\left[\mathbf{\partial} \cdot \mathbf{\partial} + \left(\frac{m_0 c}{\hbar}\right)^2\right]\psi = 0</math>: in 4-vector format * <math>\left[\partial_\mu \partial^\mu + \left(\frac{m_0 c}{\hbar}\right)^2\right]\psi = 0</math>: in tensor format * <math>\left[(\hbar \partial_{\mu} + i m_0 c)(\hbar \partial^{\mu} -i m_0 c)\right]\psi = 0</math>: in factored tensor format The [[Schrödinger equation]] is the low-velocity [[Limiting case (mathematics)|limiting case]] ({{math|''v'' ≪ ''c''}}) of the Klein–Gordon equation. When the relation is applied to a four-vector field <math>A^\mu</math> instead of a Lorentz scalar field <math>\psi</math>, then one gets the [[Proca equation]] (in [[Lorenz gauge]]): <math display="block">\left[\mathbf{\partial} \cdot \mathbf{\partial} + \left(\frac{m_0 c}{\hbar}\right)^2\right]A^\mu = 0</math> If the rest mass term is set to zero (light-like particles), then this gives the free [[Maxwell equation]] (in [[Lorenz gauge]]) <math display="block">[\mathbf{\partial} \cdot \mathbf{\partial}]A^\mu = 0</math> === Representations of the Lorentz group === Under a proper [[orthochronous]] Lorentz transformation {{math|''x'' → Λ''x''}} in [[Minkowski space]], all one-particle quantum states {{math|''ψ''<sup>''j''</sup><sub>''σ''</sub>}} of spin {{math|''j''}} with spin z-component {{math|''σ''}} locally transform under some [[Representation theory of the Lorentz group|representation]] {{math|''D''}} of the [[Lorentz group]]:<ref name="Weinberg">{{cite journal|author=Weinberg, S.|journal=Phys. Rev.|volume=133|pages=B1318–B1332|year=1964|doi=10.1103/PhysRev.133.B1318|title=Feynman Rules ''for Any'' spin|issue=5B|bibcode=1964PhRv..133.1318W|url=http://theory.fi.infn.it/becattini/files/weinberg3.pdf|access-date=2016-12-29|archive-date=2022-03-25|archive-url=https://web.archive.org/web/20220325020742/http://theory.fi.infn.it/becattini/files/weinberg3.pdf|url-status=dead}}; {{cite journal|author=Weinberg, S.|journal=Phys. Rev.|volume=134|pages=B882–B896|year=1964|doi=10.1103/PhysRev.134.B882|title=Feynman Rules ''for Any'' spin. II. Massless Particles|issue=4B|bibcode=1964PhRv..134..882W|url=http://theory.fi.infn.it/becattini/files/weinberg2.pdf|access-date=2016-12-29|archive-date=2022-03-09|archive-url=https://web.archive.org/web/20220309040610/http://theory.fi.infn.it/becattini/files/weinberg2.pdf|url-status=dead}}; {{cite journal|author=Weinberg, S.|journal=Phys. Rev.|volume=181|pages=1893–1899|year=1969|doi=10.1103/PhysRev.181.1893|title=Feynman Rules ''for Any'' spin. III|issue=5|bibcode=1969PhRv..181.1893W|url=http://theory.fi.infn.it/becattini/files/weinberg3.pdf|access-date=2016-12-29|archive-date=2022-03-25|archive-url=https://web.archive.org/web/20220325020742/http://theory.fi.infn.it/becattini/files/weinberg3.pdf|url-status=dead}}</ref><ref name="Kenmoku"> {{cite arXiv | author = K. Masakatsu | year = 2012 | title = Superradiance Problem of Bosons and Fermions for Rotating Black Holes in Bargmann–Wigner Formulation | class = gr-qc | eprint = 1208.0644 }}</ref> <math display="block">\psi(x) \rightarrow D(\Lambda) \psi(\Lambda^{-1}x) </math> where {{math|''D''(Λ)}} is some finite-dimensional representation, i.e. a matrix. Here {{math|''ψ''}} is thought of as a [[column vector]] containing components with the allowed values of {{math|''σ''}}. The [[quantum number]]s {{math|''j''}} and {{math|''σ''}} as well as other labels, continuous or discrete, representing other quantum numbers are suppressed. One value of {{math|''σ''}} may occur more than once depending on the representation. Representations with several possible values for {{math|''j''}} are considered below. The [[Representation theory#Subrepresentations, quotients, and irreducible representations|irreducible representation]]s are labeled by a pair of half-integers or integers {{math|(''A'', ''B'')}}. From these all other representations can be built up using a variety of standard methods, like taking [[tensor product]]s and [[direct sum]]s. In particular, [[space-time]] itself constitutes a [[4-vector]] representation {{math|({{sfrac|1|2}}, {{sfrac|1|2}})}} so that {{math|Λ ∈ ''D''<sup>(1/2, 1/2)</sup>}}. To put this into context; [[Dirac spinor]]s transform under the {{math|({{sfrac|1|2}}, 0) ⊕ (0, {{sfrac|1|2}})}} representation. In general, the {{math|(''A'', ''B'')}} representation space has [[Linear subspace|subspace]]s that under the [[subgroup]] of spatial [[rotation]]s, [[SO(3)]], transform irreducibly like objects of spin ''j'', where each allowed value: <math display="block">j = A + B, A + B - 1, \dots, |A - B|,</math> occurs exactly once.<ref> {{citation | last = Weinberg | first = S | page = [https://archive.org/details/quantumtheoryoff00stev/page/ <!---please insert, in 1995 edition it's 231--->] | year = 2002 | chapter = 5 | title = The Quantum Theory of Fields, vol I | publisher = Cambridge University Press | isbn = 0-521-55001-7 | chapter-url = https://archive.org/details/quantumtheoryoff00stev/page/ }}</ref> In general, ''tensor products of irreducible representations'' are reducible; they decompose as direct sums of irreducible representations. The representations {{math|''D''<sup>(''j'', 0)</sup>}} and {{math|''D''<sup>(0, ''j'')</sup>}} can each separately represent particles of spin {{math|''j''}}. A state or quantum field in such a representation would satisfy no field equation except the Klein–Gordon equation.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)