Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Rhumb line
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Spheroid=== The formulation above can be easily extended to a [[spheroid]].<ref> {{Cite journal| doi = 10.1093/mnras/106.2.124| title = On a Problem in Navigation| journal = Monthly Notices of the Royal Astronomical Society| volume = 106| issue = 2| pages = 124–127| year = 1946| last1 = Smart | first1 = W. M.| bibcode = 1946MNRAS.106..124S| doi-access = free}} </ref><ref> {{Cite journal| doi = 10.1017/S0373463300045549| title = Loxodromic Distances on the Terrestrial Spheroid| journal = Journal of Navigation| volume = 3| issue = 2| pages = 133–140| year = 1950| last1 = Williams | first1 = J. E. D.| bibcode = 1950JNav....3..133W| s2cid = 128651304}} </ref><ref> {{Cite journal| doi = 10.1017/S0373463300010791| title = On Loxodromic Navigation| journal = Journal of Navigation| volume = 45| issue = 2| pages = 292–297| year = 1992| last1 = Carlton-Wippern | first1 = K. C. | bibcode = 1992JNav...45..292C| s2cid = 140735736}} </ref><ref> {{Cite journal| doi = 10.1017/S0373463300013151| title = Practical Rhumb Line Calculations on the Spheroid| journal = Journal of Navigation| volume = 49| pages = 112–119| year = 1996| last1 = Bennett | first1 = G. G.| issue = 1| bibcode = 1996JNav...49..112B| s2cid = 128764133}} </ref><ref> {{cite journal |last1 = Botnev |first1 = V.A |last2 = Ustinov |first2 = S.M. |script-title=ru:Методы решения прямой и обратной геодезических задач с высокой точностью |language = Russian |trans-title = Methods for direct and inverse geodesic problems solving with high precision |journal = St. Petersburg State Polytechnical University Journal |volume = 3 |number = 198 |year = 2014 |pages= 49–58 |url = http://ntv.spbstu.ru/fulltext/T3.198.2014_05.PDF }} </ref><ref>{{ cite journal | last = Karney | first = C. F. F. | year = 2024 | volume = 68 | title = The area of rhumb polygons | journal = Studia Geophysica et Geodaetica | issue = 3–4 | pages = 99–120 | doi = 10.1007/s11200-024-0709-z | doi-access = free| arxiv = 2303.03219 | bibcode = 2024StGG...68...99K }}</ref> The course of the rhumb line is found merely by using the ellipsoidal [[isometric latitude]]. In formulas above on this page, substitute the [[latitude#conformal latitude|conformal latitude]] on the ellipsoid for the latitude on the sphere. Similarly, distances are found by multiplying the ellipsoidal [[meridian arc]] length by the secant of the azimuth.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)