Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Rotational spectroscopy
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Effect of vibration on rotation=== The population of vibrationally excited states follows a [[Boltzmann distribution]], so low-frequency vibrational states are appreciably populated even at room temperatures. As the moment of inertia is higher when a vibration is excited, the rotational constants (''B'') decrease. Consequently, the rotation frequencies in each vibration state are different from each other. This can give rise to "satellite" lines in the rotational spectrum. An example is provided by [[cyanodiacetylene]], HβCβ‘CβCβ‘CβCβ‘N.<ref>{{cite journal|last=Alexander|first=A. J.|author2=Kroto, H. W. |author3=Walton, D. R. M. |title=The microwave spectrum, substitution structure and dipole moment of cyanobutadiyne|journal=J. Mol. Spectrosc.|date=1967|volume=62|issue=2|pages=175β180|doi=10.1016/0022-2852(76)90347-7|bibcode = 1976JMoSp..62..175A }} Illustrated in {{harvnb|Hollas|1996|p=97}}</ref> Further, there is a [[fictitious force]], [[Coriolis effect|Coriolis coupling]], between the vibrational motion of the nuclei in the rotating (non-inertial) frame. However, as long as the vibrational quantum number does not change (i.e., the molecule is in only one state of vibration), the effect of vibration on rotation is not important, because the time for vibration is much shorter than the time required for rotation. The Coriolis coupling is often negligible, too, if one is interested in low vibrational and rotational quantum numbers only.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)