Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Runge–Kutta methods
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Runge–Kutta–Nyström methods== Runge–Kutta–Nyström methods are specialized Runge–Kutta methods that are optimized for second-order differential equations.<ref>{{cite journal |last1=Dormand |first1=J. R. |last2=Prince |first2=P. J. |title=New Runge–Kutta Algorithms for Numerical Simulation in Dynamical Astronomy |journal=Celestial Mechanics |date=October 1978 |volume=18 |issue=3 |pages=223–232|doi=10.1007/BF01230162 |bibcode=1978CeMec..18..223D |s2cid=120974351 }}</ref><ref>{{cite report | last=Fehlberg | first=E. | date = October 1974 | title = Classical seventh-, sixth-, and fifth-order Runge–Kutta–Nyström formulas with stepsize control for general second-order differential equations | publisher = National Aeronautics and Space Administration | edition =NASA TR R-432 | location =Marshall Space Flight Center, AL }}</ref> A general Runge–Kutta–Nyström method for a second-order ODE system <math display=block> \ddot y_i = f_i (y_1, y_2, \ldots, y_n ) </math> with order <math>s</math> is with the form <math display=block>\begin{cases} g_i = y_m + c_i h {\dot y}_m + h^2 \sum_{j=1}^s a_{ij} f(g_j), & i=1,2,\ldots, s\\ y_{m+1} = y_{m} + h {\dot y}_m + h^2 \sum_{j=1}^s \bar{b}_j f(g_j) \\ {\dot y}_{m+1} = {\dot y}_m + h \sum_{j=1}^s b_j f(g_j) \end{cases}</math> which forms a Butcher table with the form <math display=block> \begin{array}{c|cccc} c_1 & a_{11} & a_{12}& \dots & a_{1s}\\ c_2 & a_{21} & a_{22}& \dots & a_{2s}\\ \vdots & \vdots & \vdots& \ddots& \vdots\\ c_s & a_{s1} & a_{s2}& \dots & a_{ss} \\ \hline & {\bar b}_1 & {\bar b}_2 & \dots & {\bar b}_s\\ & b_1 & b_2 & \dots & b_s \end{array} = \begin{array}{c|c} \mathbf{c}& \mathbf{A}\\ \hline & \mathbf{{\bar b}}^\top \\ & \mathbf{b}^\top \end{array} </math> Two fourth-order explicit RKN methods are given by the following Butcher tables: <math display=block> \begin{array}{c|ccc} c_i & & a_{ij} & \\ \frac{3+\sqrt{3}}{6} & 0 & 0 & 0 \\ \frac{3-\sqrt{3}}{6} & \frac{2-\sqrt{3}}{12} & 0 & 0 \\ \frac{3+\sqrt{3}}{6} & 0 & \frac{\sqrt{3}}{6} & 0 \\ \hline \overline{b_i} & \frac{5-3 \sqrt{3}}{24} & \frac{3+\sqrt{3}}{12} & \frac{1+\sqrt{3}}{24} \\ \hline b_i & \frac{3-2 \sqrt{3}}{12} & \frac{1}{2} & \frac{3+2 \sqrt{3}}{12} \end{array} </math> <math display=block> \begin{array}{c|ccc} c_i & & a_{ij} & \\ \frac{3-\sqrt{3}}{6} & 0 & 0 & 0 \\ \frac{3+\sqrt{3}}{6} & \frac{2+\sqrt{3}}{12} & 0 & 0 \\ \frac{3-\sqrt{3}}{6} & 0 & -\frac{\sqrt{3}}{6} & 0 \\ \hline \overline{b_i} & \frac{5+3 \sqrt{3}}{24} & \frac{3-\sqrt{3}}{12} & \frac{1-\sqrt{3}}{24} \\ \hline b_i & \frac{3+2 \sqrt{3}}{12} & \frac{1}{2} & \frac{3-2 \sqrt{3}}{12} \end{array} </math> These two schemes also have the symplectic-preserving properties when the original equation is derived from a conservative classical mechanical system, i.e. when <math display=block> f_i(x_1, \ldots, x_n ) = \frac{\partial V}{\partial x_i} (x_1, \ldots, x_n ) </math> for some scalar function <math> V </math>. <ref>{{Cite journal |last1=Qin |first1=Meng-Zhao |last2=Zhu |first2=Wen-Jie |date=1991-01-01 |title=Canonical Runge-Kutta-Nyström (RKN) methods for second order ordinary differential equations |url=https://dx.doi.org/10.1016/0898-1221%2891%2990209-M |journal=Computers & Mathematics with Applications |volume=22 |issue=9 |pages=85–95 |doi=10.1016/0898-1221(91)90209-M |issn=0898-1221}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)