Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Selection rule
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Summary table ==== <math>J = L + S</math> is the total angular momentum, <math>L</math> is the [[azimuthal quantum number]], <math>S</math> is the [[spin quantum number]], and <math>M_J</math> is the [[Total angular momentum quantum number|secondary total angular momentum quantum number]]. Which transitions are allowed is based on the [[hydrogen-like atom]]. The symbol <math>\not\leftrightarrow</math> is used to indicate a forbidden transition. {| class="wikitable" style="text-align:center" |- ! colspan=2 | Allowed transitions ! Electric dipole (E1) ! Magnetic dipole (M1) ! Electric quadrupole (E2) ! Magnetic quadrupole (M2) ! Electric octupole (E3) ! Magnetic octupole (M3) |- ! rowspan=3 | Rigorous rules ! (1) | colspan=2 | <math>\begin{matrix} \Delta J = 0, \pm 1 \\ (J = 0 \not \leftrightarrow 0)\end{matrix}</math> | colspan=2 | <math>\begin{matrix} \Delta J = 0, \pm 1, \pm 2 \\ (J = 0 \not \leftrightarrow 0, 1;\ \begin{matrix}{1 \over 2}\end{matrix} \not \leftrightarrow \begin{matrix}{1 \over 2}\end{matrix})\end{matrix}</math> | colspan=2 | <math>\begin{matrix}\Delta J = 0, \pm1, \pm2, \pm 3 \\ (0 \not \leftrightarrow 0, 1, 2;\ \begin{matrix}{1 \over 2}\end{matrix} \not \leftrightarrow \begin{matrix}{1 \over 2} \end{matrix}, \begin{matrix}{3 \over 2}\end{matrix};\ 1 \not \leftrightarrow 1) \end{matrix}</math> |- ! (2) | colspan=2 | <math>\Delta M_J = 0, \pm 1 \ (M_J = 0 \not \leftrightarrow 0</math> if <math>\Delta J=0)</math> | colspan=2 | <math>\Delta M_J = 0, \pm 1, \pm2</math> | colspan=2 | <math>\Delta M_J = 0, \pm 1, \pm2, \pm 3</math> |- ! (3) | <math>\pi_\text{f} = -\pi_\text{i}</math> | colspan=2 | <math>\pi_\text{f} = \pi_\text{i}</math> | colspan=2 | <math>\pi_\text{f} = -\pi_\text{i}</math> | <math>\pi_\text{f} = \pi_\text{i}</math> |- ! rowspan=2 | LS coupling ! (4) | One-electron jump<br/><math>\Delta L = \pm 1</math> | No electron jump<br/><math>\Delta L = 0</math>,<br><math>\Delta n = 0</math> | None or one-electron jump<br/><math>\Delta L = 0, \pm 2</math> | One-electron jump<br/><math>\Delta L = \pm 1</math> | One-electron jump<br/><math>\Delta L = \pm 1, \pm 3</math> | One-electron jump<br/><math>\Delta L = 0, \pm 2</math> |- ! (5) | If <math>\Delta S = 0</math>:<br/><math>\begin{matrix}\Delta L = 0, \pm 1 \\ (L = 0 \not \leftrightarrow 0)\end{matrix}</math> | If <math>\Delta S = 0</math>:<br/><math>\Delta L = 0\,</math> | colspan=2 | If <math>\Delta S = 0</math>:<br/><math>\begin{matrix}\Delta L = 0, \pm 1, \pm 2 \\ (L = 0 \not \leftrightarrow 0, 1)\end{matrix}</math> | colspan=2 | If <math>\Delta S = 0</math>:<br/><math>\begin{matrix}\Delta L = 0, \pm 1, \pm 2, \pm 3 \\ (L=0 \not \leftrightarrow 0, 1, 2;\ 1 \not \leftrightarrow 1)\end{matrix}</math> |- ! Intermediate coupling ! (6) | colspan=2 | If <math>\Delta S = \pm 1</math>:<br/><math>\Delta L = 0, \pm 1, \pm 2\,</math> | If <math>\Delta S = \pm 1</math>:<br/><math>\begin{matrix}\Delta L = 0, \pm 1, \\ \pm 2, \pm 3 \\ (L = 0 \not \leftrightarrow 0)\end{matrix}</math> | If <math>\Delta S = \pm 1</math>:<br/><math>\begin{matrix}\Delta L = 0, \pm 1 \\ (L = 0 \not \leftrightarrow 0)\end{matrix}</math> | If <math>\Delta S = \pm 1</math>:<br/><math>\begin{matrix}\Delta L = 0, \pm 1, \\ \pm 2, \pm 3, \pm 4 \\ (L = 0 \not \leftrightarrow 0, 1)\end{matrix}</math> | If <math>\Delta S = \pm 1</math>:<br/><math>\begin{matrix}\Delta L = 0, \pm 1, \\ \pm 2 \\ (L = 0 \not \leftrightarrow 0)\end{matrix}</math> |} In [[hyperfine structure]], the total angular momentum of the atom is <math>F = I + J,</math> where <math>I</math> is the [[Quantum number#Nuclear angular momentum quantum numbers|nuclear spin angular momentum]] and <math>J</math> is the total angular momentum of the electron(s). Since <math>F = I + J</math> has a similar mathematical form as <math>J = L + S,</math> it obeys a selection rule table similar to the table above.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)