Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Seminorm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Topologies of seminormed spaces== ===Pseudometrics and the induced topology=== A seminorm <math>p</math> on <math>X</math> induces a topology, called the {{em|seminorm-induced topology}}, via the canonical [[translation-invariant]] [[Pseudometric space|pseudometric]] <math>d_p : X \times X \to \R</math>; <math>d_p(x, y) := p(x - y) = p(y - x).</math> This topology is [[Hausdorff space|Hausdorff]] if and only if <math>d_p</math> is a metric, which occurs if and only if <math>p</math> is a [[Norm (mathematics)|norm]].{{sfn|Wilansky|2013 |pp=15-21}} This topology makes <math>X</math> into a [[Locally convex topological vector space|locally convex]] [[Metrizable topological vector space|pseudometrizable]] [[topological vector space]] that has a [[Bounded set (topological vector space)|bounded]] neighborhood of the origin and a [[neighborhood basis]] at the origin consisting of the following open balls (or the closed balls) centered at the origin: <math display=block>\{x \in X : p(x) < r\} \quad \text{ or } \quad \{x \in X : p(x) \leq r\}</math> as <math>r > 0</math> ranges over the positive reals. Every seminormed space <math>(X, p)</math> should be assumed to be endowed with this topology unless indicated otherwise. A topological vector space whose topology is induced by some seminorm is called {{em|seminormable}}. Equivalently, every vector space <math>X</math> with seminorm <math>p</math> induces a [[Quotient space (linear algebra)|vector space quotient]] <math>X / W,</math> where <math>W</math> is the subspace of <math>X</math> consisting of all vectors <math>x \in X</math> with <math>p(x) = 0.</math> Then <math>X / W</math> carries a norm defined by <math>p(x + W) = p(x).</math> The resulting topology, [[Pullback|pulled back]] to <math>X,</math> is precisely the topology induced by <math>p.</math> Any seminorm-induced topology makes <math>X</math> [[Locally convex topological vector space|locally convex]], as follows. If <math>p</math> is a seminorm on <math>X</math> and <math>r \in \R,</math> call the set <math>\{x \in X : p(x) < r\}</math> the {{em|open ball of radius <math>r</math> about the origin}}; likewise the closed ball of radius <math>r</math> is <math>\{x \in X : p(x) \leq r\}.</math> The set of all open (resp. closed) <math>p</math>-balls at the origin forms a neighborhood basis of [[Convex set|convex]] [[Balanced set|balanced]] sets that are open (resp. closed) in the <math>p</math>-topology on <math>X.</math> ====Stronger, weaker, and equivalent seminorms==== The notions of stronger and weaker seminorms are akin to the notions of stronger and weaker [[Norm (mathematics)|norms]]. If <math>p</math> and <math>q</math> are seminorms on <math>X,</math> then we say that <math>q</math> is {{em|stronger}} than <math>p</math> and that <math>p</math> is {{em|weaker}} than <math>q</math> if any of the following equivalent conditions holds: # The topology on <math>X</math> induced by <math>q</math> is finer than the topology induced by <math>p.</math> # If <math>x_{\bull} = \left(x_i\right)_{i=1}^{\infty}</math> is a sequence in <math>X,</math> then <math>q\left(x_{\bull}\right) := \left(q\left(x_i\right)\right)_{i=1}^{\infty} \to 0</math> in <math>\R</math> implies <math>p\left(x_{\bull}\right) \to 0</math> in <math>\R.</math>{{sfn|Wilansky|2013 |pp=15-21}} # If <math>x_{\bull} = \left(x_i\right)_{i \in I}</math> is a [[Net (mathematics)|net]] in <math>X,</math> then <math>q\left(x_{\bull}\right) := \left(q\left(x_i\right)\right)_{i \in I} \to 0</math> in <math>\R</math> implies <math>p\left(x_{\bull}\right) \to 0</math> in <math>\R.</math> # <math>p</math> is bounded on <math>\{x \in X : q(x) < 1\}.</math>{{sfn|Wilansky|2013 |pp=15-21}} # If <math>\inf{} \{q(x) : p(x) = 1, x \in X\} = 0</math> then <math>p(x) = 0</math> for all <math>x \in X.</math>{{sfn|Wilansky|2013 |pp=15-21}} # There exists a real <math>K > 0</math> such that <math>p \leq K q</math> on <math>X.</math>{{sfn|Wilansky|2013 |pp=15-21}} The seminorms <math>p</math> and <math>q</math> are called {{em|equivalent}} if they are both weaker (or both stronger) than each other. This happens if they satisfy any of the following conditions: <ol> <li>The topology on <math>X</math> induced by <math>q</math> is the same as the topology induced by <math>p.</math></li> <li><math>q</math> is stronger than <math>p</math> and <math>p</math> is stronger than <math>q.</math>{{sfn|Wilansky|2013|pp=15-21}}</li> <li>If <math>x_{\bull} = \left(x_i\right)_{i=1}^{\infty}</math> is a sequence in <math>X</math> then <math>q\left(x_{\bull}\right) := \left(q\left(x_i\right)\right)_{i=1}^{\infty} \to 0</math> if and only if <math>p\left(x_{\bull}\right) \to 0.</math></li> <li>There exist positive real numbers <math>r > 0</math> and <math>R > 0</math> such that <math>r q \leq p \leq R q.</math></li> </ol> ===Normability and seminormability=== {{See also|Normed space|Local boundedness#locally bounded topological vector space}} A topological vector space (TVS) is said to be a {{em|{{visible anchor|seminormable space}}}} (respectively, a {{em|{{visible anchor|normable space}}}}) if its topology is induced by a single seminorm (resp. a single norm). A TVS is normable if and only if it is seminormable and Hausdorff or equivalently, if and only if it is seminormable and [[T1 space|T<sub>1</sub>]] (because a TVS is Hausdorff if and only if it is a [[T1 space|T<sub>1</sub> space]]). A '''{{visible anchor|locally bounded topological vector space}}''' is a topological vector space that possesses a bounded neighborhood of the origin. Normability of [[topological vector space]]s is characterized by [[Kolmogorov's normability criterion]]. A TVS is seminormable if and only if it has a convex bounded neighborhood of the origin.{{sfn|Wilansky|2013|pp=50-51}} Thus a [[locally convex]] TVS is seminormable if and only if it has a non-empty bounded open set.{{sfn|Narici|Beckenstein|2011|pp=156-175}} A TVS is normable if and only if it is a [[T1 space|T<sub>1</sub> space]] and admits a bounded convex neighborhood of the origin. If <math>X</math> is a Hausdorff [[locally convex]] TVS then the following are equivalent: <ol> <li><math>X</math> is normable.</li> <li><math>X</math> is seminormable.</li> <li><math>X</math> has a bounded neighborhood of the origin.</li> <li>The [[strong dual]] <math>X^{\prime}_b</math> of <math>X</math> is normable.{{sfn|TrΓ¨ves|2006|pp=136β149, 195β201, 240β252, 335β390, 420β433}}</li> <li>The strong dual <math>X^{\prime}_b</math> of <math>X</math> is [[Metrizable topological vector space|metrizable]].{{sfn|TrΓ¨ves|2006|pp=136β149, 195β201, 240β252, 335β390, 420β433}}</li> </ol> Furthermore, <math>X</math> is finite dimensional if and only if <math>X^{\prime}_{\sigma}</math> is normable (here <math>X^{\prime}_{\sigma}</math> denotes <math>X^{\prime}</math> endowed with the [[weak-* topology]]). The product of infinitely many seminormable space is again seminormable if and only if all but finitely many of these spaces trivial (that is, 0-dimensional).{{sfn|Narici|Beckenstein|2011|pp=156β175}} ===Topological properties=== <ul> <li>If <math>X</math> is a TVS and <math>p</math> is a continuous seminorm on <math>X,</math> then the closure of <math>\{x \in X : p(x) < r\}</math> in <math>X</math> is equal to <math>\{x \in X : p(x) \leq r\}.</math>{{sfn|Narici|Beckenstein|2011|pp=116β128}}</li> <li>The closure of <math>\{0\}</math> in a locally convex space <math>X</math> whose topology is defined by a family of continuous seminorms <math>\mathcal{P}</math> is equal to <math>\bigcap_{p \in \mathcal{P}} p^{-1}(0).</math>{{sfn|Narici|Beckenstein|2011|pp=149-153}}</li> <li>A subset <math>S</math> in a seminormed space <math>(X, p)</math> is [[Bounded set (topological vector space)|bounded]] if and only if <math>p(S)</math> is bounded.{{sfn|Wilansky|2013|pp=49-50}}</li> <li>If <math>(X, p)</math> is a seminormed space then the locally convex topology that <math>p</math> induces on <math>X</math> makes <math>X</math> into a [[Metrizable topological vector space|pseudometrizable TVS]] with a canonical pseudometric given by <math>d(x, y) := p(x - y)</math> for all <math>x, y \in X.</math>{{sfn|Narici|Beckenstein|2011|pp=115-154}}</li> <li>The product of infinitely many seminormable spaces is again seminormable if and only if all but finitely many of these spaces are trivial (that is, 0-dimensional).{{sfn|Narici|Beckenstein|2011|pp=156β175}}</li> </ul> ===Continuity of seminorms=== If <math>p</math> is a seminorm on a topological vector space <math>X,</math> then the following are equivalent:{{sfn|Schaefer|Wolff|1999|p=40}} <ol> <li><math>p</math> is continuous.</li> <li><math>p</math> is continuous at 0;{{sfn|Narici|Beckenstein|2011|pp=116β128}}</li> <li><math>\{x \in X : p(x) < 1\}</math> is open in <math>X</math>;{{sfn|Narici|Beckenstein|2011|pp=116β128}}</li> <li><math>\{x \in X : p(x) \leq 1\}</math> is closed neighborhood of 0 in <math>X</math>;{{sfn|Narici|Beckenstein|2011|pp=116β128}}</li> <li><math>p</math> is uniformly continuous on <math>X</math>;{{sfn|Narici|Beckenstein|2011|pp=116β128}}</li> <li>There exists a continuous seminorm <math>q</math> on <math>X</math> such that <math>p \leq q.</math>{{sfn|Narici|Beckenstein|2011|pp=116β128}}</li> </ol> In particular, if <math>(X, p)</math> is a seminormed space then a seminorm <math>q</math> on <math>X</math> is continuous if and only if <math>q</math> is dominated by a positive scalar multiple of <math>p.</math>{{sfn|Narici|Beckenstein|2011|pp=116β128}} If <math>X</math> is a real TVS, <math>f</math> is a linear functional on <math>X,</math> and <math>p</math> is a continuous seminorm (or more generally, a sublinear function) on <math>X,</math> then <math>f \leq p</math> on <math>X</math> implies that <math>f</math> is continuous.{{sfn|Narici|Beckenstein|2011|pp=177-220}} ===Continuity of linear maps=== If <math>F : (X, p) \to (Y, q)</math> is a map between seminormed spaces then let{{sfn|Wilansky|2013|pp=21-26}} <math display="block">\|F\|_{p,q} := \sup \{q(F(x)) : p(x) \leq 1, x \in X\}.</math> If <math>F : (X, p) \to (Y, q)</math> is a linear map between seminormed spaces then the following are equivalent: <ol> <li><math>F</math> is continuous;</li> <li><math>\|F\|_{p,q} < \infty</math>;{{sfn|Wilansky|2013|pp=21-26}}</li> <li>There exists a real <math>K \geq 0</math> such that <math>p \leq K q</math>;{{sfn|Wilansky|2013|pp=21-26}} * In this case, <math>\|F\|_{p,q} \leq K.</math></li> </ol> If <math>F</math> is continuous then <math>q(F(x)) \leq \|F\|_{p,q} p(x)</math> for all <math>x \in X.</math>{{sfn|Wilansky|2013|pp=21-26}} The space of all continuous linear maps <math>F : (X, p) \to (Y, q)</math> between seminormed spaces is itself a seminormed space under the seminorm <math>\|F\|_{p,q}.</math> This seminorm is a norm if <math>q</math> is a norm.{{sfn|Wilansky|2013|pp=21-26}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)